|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import MotionAdapter, UNet2DConditionModel, UNetMotionModel |
|
from diffusers.utils import logging |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
enable_full_determinism() |
|
|
|
|
|
class UNetMotionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNetMotionModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 4 |
|
num_frames = 4 |
|
sizes = (16, 16) |
|
|
|
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
encoder_hidden_states = floats_tensor((batch_size, 4, 16)).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 4, 16, 16) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 4, 16, 16) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (16, 32), |
|
"norm_num_groups": 16, |
|
"down_block_types": ("CrossAttnDownBlockMotion", "DownBlockMotion"), |
|
"up_block_types": ("UpBlockMotion", "CrossAttnUpBlockMotion"), |
|
"cross_attention_dim": 16, |
|
"num_attention_heads": 2, |
|
"out_channels": 4, |
|
"in_channels": 4, |
|
"layers_per_block": 1, |
|
"sample_size": 16, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_from_unet2d(self): |
|
torch.manual_seed(0) |
|
unet2d = UNet2DConditionModel() |
|
|
|
torch.manual_seed(1) |
|
model = self.model_class.from_unet2d(unet2d) |
|
model_state_dict = model.state_dict() |
|
|
|
for param_name, param_value in unet2d.named_parameters(): |
|
self.assertTrue(torch.equal(model_state_dict[param_name], param_value)) |
|
|
|
def test_freeze_unet2d(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.freeze_unet2d_params() |
|
|
|
for param_name, param_value in model.named_parameters(): |
|
if "motion_modules" not in param_name: |
|
self.assertFalse(param_value.requires_grad) |
|
|
|
else: |
|
self.assertTrue(param_value.requires_grad) |
|
|
|
def test_loading_motion_adapter(self): |
|
model = self.model_class() |
|
adapter = MotionAdapter() |
|
model.load_motion_modules(adapter) |
|
|
|
for idx, down_block in enumerate(model.down_blocks): |
|
adapter_state_dict = adapter.down_blocks[idx].motion_modules.state_dict() |
|
for param_name, param_value in down_block.motion_modules.named_parameters(): |
|
self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value)) |
|
|
|
for idx, up_block in enumerate(model.up_blocks): |
|
adapter_state_dict = adapter.up_blocks[idx].motion_modules.state_dict() |
|
for param_name, param_value in up_block.motion_modules.named_parameters(): |
|
self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value)) |
|
|
|
mid_block_adapter_state_dict = adapter.mid_block.motion_modules.state_dict() |
|
for param_name, param_value in model.mid_block.motion_modules.named_parameters(): |
|
self.assertTrue(torch.equal(mid_block_adapter_state_dict[param_name], param_value)) |
|
|
|
def test_saving_motion_modules(self): |
|
torch.manual_seed(0) |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_motion_modules(tmpdirname) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors"))) |
|
|
|
adapter_loaded = MotionAdapter.from_pretrained(tmpdirname) |
|
|
|
torch.manual_seed(0) |
|
model_loaded = self.model_class(**init_dict) |
|
model_loaded.load_motion_modules(adapter_loaded) |
|
model_loaded.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict)[0] |
|
output_loaded = model_loaded(**inputs_dict)[0] |
|
|
|
max_diff = (output - output_loaded).abs().max().item() |
|
self.assertLessEqual(max_diff, 1e-4, "Models give different forward passes") |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_enable_works(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
assert ( |
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ |
|
== "XFormersAttnProcessor" |
|
), "xformers is not enabled" |
|
|
|
def test_gradient_checkpointing_is_applied(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model_class_copy = copy.copy(self.model_class) |
|
|
|
modules_with_gc_enabled = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _set_gradient_checkpointing_new(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
modules_with_gc_enabled[module.__class__.__name__] = True |
|
|
|
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new |
|
|
|
model = model_class_copy(**init_dict) |
|
model.enable_gradient_checkpointing() |
|
|
|
EXPECTED_SET = { |
|
"CrossAttnUpBlockMotion", |
|
"CrossAttnDownBlockMotion", |
|
"UNetMidBlockCrossAttnMotion", |
|
"UpBlockMotion", |
|
"Transformer2DModel", |
|
"DownBlockMotion", |
|
} |
|
|
|
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET |
|
assert all(modules_with_gc_enabled.values()), "All modules should be enabled" |
|
|
|
def test_feed_forward_chunking(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
init_dict["block_out_channels"] = (32, 64) |
|
init_dict["norm_num_groups"] = 32 |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict)[0] |
|
|
|
model.enable_forward_chunking() |
|
with torch.no_grad(): |
|
output_2 = model(**inputs_dict)[0] |
|
|
|
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match") |
|
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2 |
|
|
|
def test_pickle(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict).sample |
|
|
|
sample_copy = copy.copy(sample) |
|
|
|
assert (sample - sample_copy).abs().max() < 1e-4 |
|
|
|
def test_from_save_pretrained(self, expected_max_diff=5e-5): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, safe_serialization=False) |
|
torch.manual_seed(0) |
|
new_model = self.model_class.from_pretrained(tmpdirname) |
|
new_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
image = model(**inputs_dict) |
|
if isinstance(image, dict): |
|
image = image.to_tuple()[0] |
|
|
|
new_image = new_model(**inputs_dict) |
|
|
|
if isinstance(new_image, dict): |
|
new_image = new_image.to_tuple()[0] |
|
|
|
max_diff = (image - new_image).abs().max().item() |
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes") |
|
|
|
def test_from_save_pretrained_variant(self, expected_max_diff=5e-5): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False) |
|
|
|
torch.manual_seed(0) |
|
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16") |
|
|
|
with self.assertRaises(OSError) as error_context: |
|
self.model_class.from_pretrained(tmpdirname) |
|
|
|
|
|
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception) |
|
|
|
new_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
image = model(**inputs_dict) |
|
if isinstance(image, dict): |
|
image = image.to_tuple()[0] |
|
|
|
new_image = new_model(**inputs_dict) |
|
|
|
if isinstance(new_image, dict): |
|
new_image = new_image.to_tuple()[0] |
|
|
|
max_diff = (image - new_image).abs().max().item() |
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes") |
|
|
|
def test_forward_with_norm_groups(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["norm_num_groups"] = 16 |
|
init_dict["block_out_channels"] = (16, 32) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.to_tuple()[0] |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_asymmetric_motion_model(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["layers_per_block"] = (2, 3) |
|
init_dict["transformer_layers_per_block"] = ((1, 2), (3, 4, 5)) |
|
init_dict["reverse_transformer_layers_per_block"] = ((7, 6, 7, 4), (4, 2, 2)) |
|
|
|
init_dict["temporal_transformer_layers_per_block"] = ((2, 5), (2, 3, 5)) |
|
init_dict["reverse_temporal_transformer_layers_per_block"] = ((5, 4, 3, 4), (3, 2, 2)) |
|
|
|
init_dict["num_attention_heads"] = (2, 4) |
|
init_dict["motion_num_attention_heads"] = (4, 4) |
|
init_dict["reverse_motion_num_attention_heads"] = (2, 2) |
|
|
|
init_dict["use_motion_mid_block"] = True |
|
init_dict["mid_block_layers"] = 2 |
|
init_dict["transformer_layers_per_mid_block"] = (1, 5) |
|
init_dict["temporal_transformer_layers_per_mid_block"] = (2, 4) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.to_tuple()[0] |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|