SD_kirby_dreambooth / diffusers /tests /models /unets /test_models_unet_controlnetxs.py
ShadeEngine's picture
End of training
4ac8f3e verified
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
import torch
from torch import nn
from diffusers import ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel
from diffusers.utils import logging
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, is_flaky, torch_device
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
class UNetControlNetXSModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNetControlNetXSModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (16, 16)
conditioning_image_size = (3, 32, 32) # size of additional, unprocessed image for control-conditioning
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device)
controlnet_cond = floats_tensor((batch_size, *conditioning_image_size)).to(torch_device)
conditioning_scale = 1
return {
"sample": noise,
"timestep": time_step,
"encoder_hidden_states": encoder_hidden_states,
"controlnet_cond": controlnet_cond,
"conditioning_scale": conditioning_scale,
}
@property
def input_shape(self):
return (4, 16, 16)
@property
def output_shape(self):
return (4, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 16,
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
"block_out_channels": (4, 8),
"cross_attention_dim": 8,
"transformer_layers_per_block": 1,
"num_attention_heads": 2,
"norm_num_groups": 4,
"upcast_attention": False,
"ctrl_block_out_channels": [2, 4],
"ctrl_num_attention_heads": 4,
"ctrl_max_norm_num_groups": 2,
"ctrl_conditioning_embedding_out_channels": (2, 2),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_unet(self):
"""For some tests we also need the underlying UNet. For these, we'll build the UNetControlNetXSModel from the UNet and ControlNetXS-Adapter"""
return UNet2DConditionModel(
block_out_channels=(4, 8),
layers_per_block=2,
sample_size=16,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=8,
norm_num_groups=4,
use_linear_projection=True,
)
def get_dummy_controlnet_from_unet(self, unet, **kwargs):
"""For some tests we also need the underlying ControlNetXS-Adapter. For these, we'll build the UNetControlNetXSModel from the UNet and ControlNetXS-Adapter"""
# size_ratio and conditioning_embedding_out_channels chosen to keep model small
return ControlNetXSAdapter.from_unet(unet, size_ratio=1, conditioning_embedding_out_channels=(2, 2), **kwargs)
def test_from_unet(self):
unet = self.get_dummy_unet()
controlnet = self.get_dummy_controlnet_from_unet(unet)
model = UNetControlNetXSModel.from_unet(unet, controlnet)
model_state_dict = model.state_dict()
def assert_equal_weights(module, weight_dict_prefix):
for param_name, param_value in module.named_parameters():
assert torch.equal(model_state_dict[weight_dict_prefix + "." + param_name], param_value)
# # check unet
# everything expect down,mid,up blocks
modules_from_unet = [
"time_embedding",
"conv_in",
"conv_norm_out",
"conv_out",
]
for p in modules_from_unet:
assert_equal_weights(getattr(unet, p), "base_" + p)
optional_modules_from_unet = [
"class_embedding",
"add_time_proj",
"add_embedding",
]
for p in optional_modules_from_unet:
if hasattr(unet, p) and getattr(unet, p) is not None:
assert_equal_weights(getattr(unet, p), "base_" + p)
# down blocks
assert len(unet.down_blocks) == len(model.down_blocks)
for i, d in enumerate(unet.down_blocks):
assert_equal_weights(d.resnets, f"down_blocks.{i}.base_resnets")
if hasattr(d, "attentions"):
assert_equal_weights(d.attentions, f"down_blocks.{i}.base_attentions")
if hasattr(d, "downsamplers") and getattr(d, "downsamplers") is not None:
assert_equal_weights(d.downsamplers[0], f"down_blocks.{i}.base_downsamplers")
# mid block
assert_equal_weights(unet.mid_block, "mid_block.base_midblock")
# up blocks
assert len(unet.up_blocks) == len(model.up_blocks)
for i, u in enumerate(unet.up_blocks):
assert_equal_weights(u.resnets, f"up_blocks.{i}.resnets")
if hasattr(u, "attentions"):
assert_equal_weights(u.attentions, f"up_blocks.{i}.attentions")
if hasattr(u, "upsamplers") and getattr(u, "upsamplers") is not None:
assert_equal_weights(u.upsamplers[0], f"up_blocks.{i}.upsamplers")
# # check controlnet
# everything expect down,mid,up blocks
modules_from_controlnet = {
"controlnet_cond_embedding": "controlnet_cond_embedding",
"conv_in": "ctrl_conv_in",
"control_to_base_for_conv_in": "control_to_base_for_conv_in",
}
optional_modules_from_controlnet = {"time_embedding": "ctrl_time_embedding"}
for name_in_controlnet, name_in_unetcnxs in modules_from_controlnet.items():
assert_equal_weights(getattr(controlnet, name_in_controlnet), name_in_unetcnxs)
for name_in_controlnet, name_in_unetcnxs in optional_modules_from_controlnet.items():
if hasattr(controlnet, name_in_controlnet) and getattr(controlnet, name_in_controlnet) is not None:
assert_equal_weights(getattr(controlnet, name_in_controlnet), name_in_unetcnxs)
# down blocks
assert len(controlnet.down_blocks) == len(model.down_blocks)
for i, d in enumerate(controlnet.down_blocks):
assert_equal_weights(d.resnets, f"down_blocks.{i}.ctrl_resnets")
assert_equal_weights(d.base_to_ctrl, f"down_blocks.{i}.base_to_ctrl")
assert_equal_weights(d.ctrl_to_base, f"down_blocks.{i}.ctrl_to_base")
if d.attentions is not None:
assert_equal_weights(d.attentions, f"down_blocks.{i}.ctrl_attentions")
if d.downsamplers is not None:
assert_equal_weights(d.downsamplers, f"down_blocks.{i}.ctrl_downsamplers")
# mid block
assert_equal_weights(controlnet.mid_block.base_to_ctrl, "mid_block.base_to_ctrl")
assert_equal_weights(controlnet.mid_block.midblock, "mid_block.ctrl_midblock")
assert_equal_weights(controlnet.mid_block.ctrl_to_base, "mid_block.ctrl_to_base")
# up blocks
assert len(controlnet.up_connections) == len(model.up_blocks)
for i, u in enumerate(controlnet.up_connections):
assert_equal_weights(u.ctrl_to_base, f"up_blocks.{i}.ctrl_to_base")
def test_freeze_unet(self):
def assert_frozen(module):
for p in module.parameters():
assert not p.requires_grad
def assert_unfrozen(module):
for p in module.parameters():
assert p.requires_grad
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = UNetControlNetXSModel(**init_dict)
model.freeze_unet_params()
# # check unet
# everything expect down,mid,up blocks
modules_from_unet = [
model.base_time_embedding,
model.base_conv_in,
model.base_conv_norm_out,
model.base_conv_out,
]
for m in modules_from_unet:
assert_frozen(m)
optional_modules_from_unet = [
model.base_add_time_proj,
model.base_add_embedding,
]
for m in optional_modules_from_unet:
if m is not None:
assert_frozen(m)
# down blocks
for i, d in enumerate(model.down_blocks):
assert_frozen(d.base_resnets)
if isinstance(d.base_attentions, nn.ModuleList): # attentions can be list of Nones
assert_frozen(d.base_attentions)
if d.base_downsamplers is not None:
assert_frozen(d.base_downsamplers)
# mid block
assert_frozen(model.mid_block.base_midblock)
# up blocks
for i, u in enumerate(model.up_blocks):
assert_frozen(u.resnets)
if isinstance(u.attentions, nn.ModuleList): # attentions can be list of Nones
assert_frozen(u.attentions)
if u.upsamplers is not None:
assert_frozen(u.upsamplers)
# # check controlnet
# everything expect down,mid,up blocks
modules_from_controlnet = [
model.controlnet_cond_embedding,
model.ctrl_conv_in,
model.control_to_base_for_conv_in,
]
optional_modules_from_controlnet = [model.ctrl_time_embedding]
for m in modules_from_controlnet:
assert_unfrozen(m)
for m in optional_modules_from_controlnet:
if m is not None:
assert_unfrozen(m)
# down blocks
for d in model.down_blocks:
assert_unfrozen(d.ctrl_resnets)
assert_unfrozen(d.base_to_ctrl)
assert_unfrozen(d.ctrl_to_base)
if isinstance(d.ctrl_attentions, nn.ModuleList): # attentions can be list of Nones
assert_unfrozen(d.ctrl_attentions)
if d.ctrl_downsamplers is not None:
assert_unfrozen(d.ctrl_downsamplers)
# mid block
assert_unfrozen(model.mid_block.base_to_ctrl)
assert_unfrozen(model.mid_block.ctrl_midblock)
assert_unfrozen(model.mid_block.ctrl_to_base)
# up blocks
for u in model.up_blocks:
assert_unfrozen(u.ctrl_to_base)
def test_gradient_checkpointing_is_applied(self):
model_class_copy = copy.copy(UNetControlNetXSModel)
modules_with_gc_enabled = {}
# now monkey patch the following function:
# def _set_gradient_checkpointing(self, module, value=False):
# if hasattr(module, "gradient_checkpointing"):
# module.gradient_checkpointing = value
def _set_gradient_checkpointing_new(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
modules_with_gc_enabled[module.__class__.__name__] = True
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = model_class_copy(**init_dict)
model.enable_gradient_checkpointing()
EXPECTED_SET = {
"Transformer2DModel",
"UNetMidBlock2DCrossAttn",
"ControlNetXSCrossAttnDownBlock2D",
"ControlNetXSCrossAttnMidBlock2D",
"ControlNetXSCrossAttnUpBlock2D",
}
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET
assert all(modules_with_gc_enabled.values()), "All modules should be enabled"
@is_flaky
def test_forward_no_control(self):
unet = self.get_dummy_unet()
controlnet = self.get_dummy_controlnet_from_unet(unet)
model = UNetControlNetXSModel.from_unet(unet, controlnet)
unet = unet.to(torch_device)
model = model.to(torch_device)
input_ = self.dummy_input
control_specific_input = ["controlnet_cond", "conditioning_scale"]
input_for_unet = {k: v for k, v in input_.items() if k not in control_specific_input}
with torch.no_grad():
unet_output = unet(**input_for_unet).sample.cpu()
unet_controlnet_output = model(**input_, apply_control=False).sample.cpu()
assert np.abs(unet_output.flatten() - unet_controlnet_output.flatten()).max() < 3e-4
def test_time_embedding_mixing(self):
unet = self.get_dummy_unet()
controlnet = self.get_dummy_controlnet_from_unet(unet)
controlnet_mix_time = self.get_dummy_controlnet_from_unet(
unet, time_embedding_mix=0.5, learn_time_embedding=True
)
model = UNetControlNetXSModel.from_unet(unet, controlnet)
model_mix_time = UNetControlNetXSModel.from_unet(unet, controlnet_mix_time)
unet = unet.to(torch_device)
model = model.to(torch_device)
model_mix_time = model_mix_time.to(torch_device)
input_ = self.dummy_input
with torch.no_grad():
output = model(**input_).sample
output_mix_time = model_mix_time(**input_).sample
assert output.shape == output_mix_time.shape
def test_forward_with_norm_groups(self):
# UNetControlNetXSModel currently only supports StableDiffusion and StableDiffusion-XL, both of which have norm_num_groups fixed at 32. So we don't need to test different values for norm_num_groups.
pass