|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import UNet1DModel |
|
from diffusers.utils.testing_utils import ( |
|
backend_manual_seed, |
|
floats_tensor, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
class UNet1DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNet1DModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_features = 14 |
|
seq_len = 16 |
|
|
|
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) |
|
time_step = torch.tensor([10] * batch_size).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 14, 16) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 14, 16) |
|
|
|
def test_ema_training(self): |
|
pass |
|
|
|
def test_training(self): |
|
pass |
|
|
|
def test_determinism(self): |
|
super().test_determinism() |
|
|
|
def test_outputs_equivalence(self): |
|
super().test_outputs_equivalence() |
|
|
|
def test_from_save_pretrained(self): |
|
super().test_from_save_pretrained() |
|
|
|
def test_from_save_pretrained_variant(self): |
|
super().test_from_save_pretrained_variant() |
|
|
|
def test_model_from_pretrained(self): |
|
super().test_model_from_pretrained() |
|
|
|
def test_output(self): |
|
super().test_output() |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (8, 8, 16, 16), |
|
"in_channels": 14, |
|
"out_channels": 14, |
|
"time_embedding_type": "positional", |
|
"use_timestep_embedding": True, |
|
"flip_sin_to_cos": False, |
|
"freq_shift": 1.0, |
|
"out_block_type": "OutConv1DBlock", |
|
"mid_block_type": "MidResTemporalBlock1D", |
|
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), |
|
"up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"), |
|
"act_fn": "swish", |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_from_pretrained_hub(self): |
|
model, loading_info = UNet1DModel.from_pretrained( |
|
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet" |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
|
|
model.to(torch_device) |
|
image = model(**self.dummy_input) |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
def test_output_pretrained(self): |
|
model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet") |
|
torch.manual_seed(0) |
|
backend_manual_seed(torch_device, 0) |
|
|
|
num_features = model.config.in_channels |
|
seq_len = 16 |
|
noise = torch.randn((1, seq_len, num_features)).permute( |
|
0, 2, 1 |
|
) |
|
time_step = torch.full((num_features,), 0) |
|
|
|
with torch.no_grad(): |
|
output = model(noise, time_step).sample.permute(0, 2, 1) |
|
|
|
output_slice = output[0, -3:, -3:].flatten() |
|
|
|
expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348]) |
|
|
|
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3)) |
|
|
|
def test_forward_with_norm_groups(self): |
|
|
|
pass |
|
|
|
@slow |
|
def test_unet_1d_maestro(self): |
|
model_id = "harmonai/maestro-150k" |
|
model = UNet1DModel.from_pretrained(model_id, subfolder="unet") |
|
model.to(torch_device) |
|
|
|
sample_size = 65536 |
|
noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device) |
|
timestep = torch.tensor([1]).to(torch_device) |
|
|
|
with torch.no_grad(): |
|
output = model(noise, timestep).sample |
|
|
|
output_sum = output.abs().sum() |
|
output_max = output.abs().max() |
|
|
|
assert (output_sum - 224.0896).abs() < 0.5 |
|
assert (output_max - 0.0607).abs() < 4e-4 |
|
|
|
|
|
class UNetRLModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNet1DModel |
|
main_input_name = "sample" |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_features = 14 |
|
seq_len = 16 |
|
|
|
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) |
|
time_step = torch.tensor([10] * batch_size).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 14, 16) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 14, 1) |
|
|
|
def test_determinism(self): |
|
super().test_determinism() |
|
|
|
def test_outputs_equivalence(self): |
|
super().test_outputs_equivalence() |
|
|
|
def test_from_save_pretrained(self): |
|
super().test_from_save_pretrained() |
|
|
|
def test_from_save_pretrained_variant(self): |
|
super().test_from_save_pretrained_variant() |
|
|
|
def test_model_from_pretrained(self): |
|
super().test_model_from_pretrained() |
|
|
|
def test_output(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1)) |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_ema_training(self): |
|
pass |
|
|
|
def test_training(self): |
|
pass |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"in_channels": 14, |
|
"out_channels": 14, |
|
"down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"], |
|
"up_block_types": [], |
|
"out_block_type": "ValueFunction", |
|
"mid_block_type": "ValueFunctionMidBlock1D", |
|
"block_out_channels": [32, 64, 128, 256], |
|
"layers_per_block": 1, |
|
"downsample_each_block": True, |
|
"use_timestep_embedding": True, |
|
"freq_shift": 1.0, |
|
"flip_sin_to_cos": False, |
|
"time_embedding_type": "positional", |
|
"act_fn": "mish", |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_from_pretrained_hub(self): |
|
value_function, vf_loading_info = UNet1DModel.from_pretrained( |
|
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" |
|
) |
|
self.assertIsNotNone(value_function) |
|
self.assertEqual(len(vf_loading_info["missing_keys"]), 0) |
|
|
|
value_function.to(torch_device) |
|
image = value_function(**self.dummy_input) |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
def test_output_pretrained(self): |
|
value_function, vf_loading_info = UNet1DModel.from_pretrained( |
|
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" |
|
) |
|
torch.manual_seed(0) |
|
backend_manual_seed(torch_device, 0) |
|
|
|
num_features = value_function.config.in_channels |
|
seq_len = 14 |
|
noise = torch.randn((1, seq_len, num_features)).permute( |
|
0, 2, 1 |
|
) |
|
time_step = torch.full((num_features,), 0) |
|
|
|
with torch.no_grad(): |
|
output = value_function(noise, time_step).sample |
|
|
|
|
|
expected_output_slice = torch.tensor([165.25] * seq_len) |
|
|
|
self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3)) |
|
|
|
def test_forward_with_norm_groups(self): |
|
|
|
pass |
|
|