File size: 13,969 Bytes
4ac8f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import PIL.Image
import torch

from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput


class MaskedStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
    debug_save = False

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: Union[
            torch.Tensor,
            PIL.Image.Image,
            np.ndarray,
            List[torch.Tensor],
            List[PIL.Image.Image],
            List[np.ndarray],
        ] = None,
        strength: float = 0.8,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        mask: Union[
            torch.Tensor,
            PIL.Image.Image,
            np.ndarray,
            List[torch.Tensor],
            List[PIL.Image.Image],
            List[np.ndarray],
        ] = None,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
                `Image` or tensor representing an image batch to be used as the starting point. Can also accept image
                latents as `image`, but if passing latents directly it is not encoded again.
            strength (`float`, *optional*, defaults to 0.8):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. This parameter is modulated by `strength`.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            mask (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`, *optional*):
                A mask with non-zero elements for the area to be inpainted. If not specified, no mask is applied.
        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """
        # code adapted from parent class StableDiffusionImg2ImgPipeline

        # 0. Check inputs. Raise error if not correct
        self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)

        # 1. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 2. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )

        # 3. Preprocess image
        image = self.image_processor.preprocess(image)

        # 4. set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)

        # 5. Prepare latent variables
        # it is sampled from the latent distribution of the VAE
        latents = self.prepare_latents(
            image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
        )

        # mean of the latent distribution
        init_latents = [
            self.vae.encode(image.to(device=device, dtype=prompt_embeds.dtype)[i : i + 1]).latent_dist.mean
            for i in range(batch_size)
        ]
        init_latents = torch.cat(init_latents, dim=0)

        # 6. create latent mask
        latent_mask = self._make_latent_mask(latents, mask)

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if latent_mask is not None:
                    latents = torch.lerp(init_latents * self.vae.config.scaling_factor, latents, latent_mask)
                    noise_pred = torch.lerp(torch.zeros_like(noise_pred), noise_pred, latent_mask)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            scaled = latents / self.vae.config.scaling_factor
            if latent_mask is not None:
                # scaled = latents / self.vae.config.scaling_factor * latent_mask + init_latents * (1 - latent_mask)
                scaled = torch.lerp(init_latents, scaled, latent_mask)
            image = self.vae.decode(scaled, return_dict=False)[0]
            if self.debug_save:
                image_gen = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
                image_gen = self.image_processor.postprocess(image_gen, output_type=output_type, do_denormalize=[True])
                image_gen[0].save("from_latent.png")
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def _make_latent_mask(self, latents, mask):
        if mask is not None:
            latent_mask = []
            if not isinstance(mask, list):
                tmp_mask = [mask]
            else:
                tmp_mask = mask
            _, l_channels, l_height, l_width = latents.shape
            for m in tmp_mask:
                if not isinstance(m, PIL.Image.Image):
                    if len(m.shape) == 2:
                        m = m[..., np.newaxis]
                    if m.max() > 1:
                        m = m / 255.0
                    m = self.image_processor.numpy_to_pil(m)[0]
                if m.mode != "L":
                    m = m.convert("L")
                resized = self.image_processor.resize(m, l_height, l_width)
                if self.debug_save:
                    resized.save("latent_mask.png")
                latent_mask.append(np.repeat(np.array(resized)[np.newaxis, :, :], l_channels, axis=0))
            latent_mask = torch.as_tensor(np.stack(latent_mask)).to(latents)
            latent_mask = latent_mask / latent_mask.max()
        return latent_mask