File size: 14,728 Bytes
4ac8f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
## Amused training

Amused can be finetuned on simple datasets relatively cheaply and quickly. Using 8bit optimizers, lora, and gradient accumulation, amused can be finetuned with as little as 5.5 GB. Here are a set of examples for finetuning amused on some relatively simple datasets. These training recipies are aggressively oriented towards minimal resources and fast verification -- i.e. the batch sizes are quite low and the learning rates are quite high. For optimal quality, you will probably want to increase the batch sizes and decrease learning rates.

All training examples use fp16 mixed precision and gradient checkpointing. We don't show 8 bit adam + lora as its about the same memory use as just using lora (bitsandbytes uses full precision optimizer states for weights below a minimum size).

### Finetuning the 256 checkpoint

These examples finetune on this [nouns](https://huggingface.co/datasets/m1guelpf/nouns) dataset.

Example results:

![noun1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun1.png) ![noun2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun2.png) ![noun3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun3.png)


#### Full finetuning

Batch size: 8, Learning rate: 1e-4, Gives decent results in 750-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      19.7 GB       |
|    4        |          2                   |     8             |      18.3 GB       |
|    1        |          8                   |     8             |      17.9 GB       |

```sh
accelerate launch train_amused.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 1e-4 \
    --pretrained_model_name_or_path amused/amused-256 \
    --instance_data_dataset  'm1guelpf/nouns' \
    --image_key image \
    --prompt_key text \
    --resolution 256 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
        'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
        'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
        'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
        'a pixel art character with square red glasses' \
        'a pixel art character' \
        'square red glasses on a pixel art character' \
        'square red glasses on a pixel art character with a baseball-shaped head' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + 8 bit adam

Note that this training config keeps the batch size low and the learning rate high to get results fast with low resources. However, due to 8 bit adam, it will diverge eventually. If you want to train for longer, you will have to up the batch size and lower the learning rate.

Batch size: 16, Learning rate: 2e-5, Gives decent results in ~750 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    16        |          1                   |     16             |      20.1 GB       |
|    8        |          2                   |      16           |      15.6 GB       |
|    1        |          16                   |     16            |      10.7 GB       |

```sh
accelerate launch train_amused.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 2e-5 \
    --use_8bit_adam \
    --pretrained_model_name_or_path amused/amused-256 \
    --instance_data_dataset  'm1guelpf/nouns' \
    --image_key image \
    --prompt_key text \
    --resolution 256 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
        'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
        'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
        'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
        'a pixel art character with square red glasses' \
        'a pixel art character' \
        'square red glasses on a pixel art character' \
        'square red glasses on a pixel art character with a baseball-shaped head' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + lora

Batch size: 16, Learning rate: 8e-4, Gives decent results in 1000-1250 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    16        |          1                   |     16             |      14.1 GB       |
|    8        |          2                   |      16           |      10.1 GB       |
|    1        |          16                   |     16            |      6.5 GB       |

```sh
accelerate launch train_amused.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 8e-4 \
    --use_lora \
    --pretrained_model_name_or_path amused/amused-256 \
    --instance_data_dataset  'm1guelpf/nouns' \
    --image_key image \
    --prompt_key text \
    --resolution 256 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
        'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
        'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
        'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
        'a pixel art character with square red glasses' \
        'a pixel art character' \
        'square red glasses on a pixel art character' \
        'square red glasses on a pixel art character with a baseball-shaped head' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

### Finetuning the 512 checkpoint

These examples finetune on this [minecraft](https://huggingface.co/monadical-labs/minecraft-preview) dataset.

Example results:

![minecraft1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft1.png) ![minecraft2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft2.png) ![minecraft3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft3.png)

#### Full finetuning

Batch size: 8, Learning rate: 8e-5, Gives decent results in 500-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      24.2 GB       |
|    4        |          2                   |     8             |      19.7 GB       |
|    1        |          8                   |     8             |      16.99 GB       |

```sh
accelerate launch train_amused.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 8e-5 \
    --pretrained_model_name_or_path amused/amused-512 \
    --instance_data_dataset  'monadical-labs/minecraft-preview' \
    --prompt_prefix 'minecraft ' \
    --image_key image \
    --prompt_key text \
    --resolution 512 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'minecraft Avatar' \
        'minecraft character' \
        'minecraft' \
        'minecraft president' \
        'minecraft pig' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + 8 bit adam

Batch size: 8, Learning rate: 5e-6, Gives decent results in 500-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      21.2 GB       |
|    4        |          2                   |     8             |      13.3 GB       |
|    1        |          8                   |     8             |      9.9 GB       |

```sh
accelerate launch train_amused.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 5e-6 \
    --pretrained_model_name_or_path amused/amused-512 \
    --instance_data_dataset  'monadical-labs/minecraft-preview' \
    --prompt_prefix 'minecraft ' \
    --image_key image \
    --prompt_key text \
    --resolution 512 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'minecraft Avatar' \
        'minecraft character' \
        'minecraft' \
        'minecraft president' \
        'minecraft pig' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

#### Full finetuning + lora

Batch size: 8, Learning rate: 1e-4, Gives decent results in 500-1000 steps

| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
|    8        |          1                   |     8             |      12.7 GB       |
|    4        |          2                   |     8             |      9.0 GB       |
|    1        |          8                   |     8             |      5.6 GB       |

```sh
accelerate launch train_amused.py \
    --output_dir <output path> \
    --train_batch_size <batch size> \
    --gradient_accumulation_steps <gradient accumulation steps> \
    --learning_rate 1e-4 \
    --use_lora \
    --pretrained_model_name_or_path amused/amused-512 \
    --instance_data_dataset  'monadical-labs/minecraft-preview' \
    --prompt_prefix 'minecraft ' \
    --image_key image \
    --prompt_key text \
    --resolution 512 \
    --mixed_precision fp16 \
    --lr_scheduler constant \
    --validation_prompts \
        'minecraft Avatar' \
        'minecraft character' \
        'minecraft' \
        'minecraft president' \
        'minecraft pig' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 250 \
    --gradient_checkpointing
```

### Styledrop

[Styledrop](https://arxiv.org/abs/2306.00983) is an efficient finetuning method for learning a new style from just one or very few images. It has an optional first stage to generate human picked additional training samples. The additional training samples can be used to augment the initial images. Our examples exclude the optional additional image selection stage and instead we just finetune on a single image.

This is our example style image:
![example](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png)

Download it to your local directory with
```sh
wget https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png
```

#### 256

Example results:

![glowing_256_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_1.png) ![glowing_256_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_2.png) ![glowing_256_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_3.png)

Learning rate: 4e-4, Gives decent results in 1500-2000 steps

Memory used: 6.5 GB

```sh
accelerate launch train_amused.py \
    --output_dir <output path> \
    --mixed_precision fp16 \
    --report_to wandb \
    --use_lora \
    --pretrained_model_name_or_path amused/amused-256 \
    --train_batch_size 1 \
    --lr_scheduler constant \
    --learning_rate 4e-4 \
    --validation_prompts \
        'A chihuahua walking on the street in [V] style' \
        'A banana on the table in [V] style' \
        'A church on the street in [V] style' \
        'A tabby cat walking in the forest in [V] style' \
    --instance_data_image 'A mushroom in [V] style.png' \
    --max_train_steps 10000 \
    --checkpointing_steps 500 \
    --validation_steps 100 \
    --resolution 256
```

#### 512

Example results:

![glowing_512_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_1.png) ![glowing_512_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_2.png) ![glowing_512_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_3.png)

Learning rate: 1e-3, Lora alpha 1, Gives decent results in 1500-2000 steps

Memory used: 5.6 GB

```
accelerate launch train_amused.py \
    --output_dir <output path> \
    --mixed_precision fp16 \
    --report_to wandb \
    --use_lora \
    --pretrained_model_name_or_path amused/amused-512 \
    --train_batch_size 1 \
    --lr_scheduler constant \
    --learning_rate 1e-3 \
    --validation_prompts \
        'A chihuahua walking on the street in [V] style' \
        'A banana on the table in [V] style' \
        'A church on the street in [V] style' \
        'A tabby cat walking in the forest in [V] style' \
    --instance_data_image 'A mushroom in [V] style.png' \
    --max_train_steps 100000 \
    --checkpointing_steps 500 \
    --validation_steps 100 \
    --resolution 512 \
    --lora_alpha 1
```