{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f10470b95d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651776618.4768767, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDHzz2P/mK6KCybu6uk2jWCR5O7PrSxOgAAgD8AAIA/5tiHvWaFpT4TM+U7S0hVvl/OgD0qcuW9AAAAAAAAAADN4Ms82k/cPqp+1LtZnmO+pd5lvSCqYT0AAAAAAAAAAGZFzLy5zIc/qfGgvUlxvL7z5ZU9Jgg+vAAAAAAAAAAA1tGuvkIahT+olNe+RgG0vo9dkb41MZS8AAAAAAAAAAAA5hK9w70OugBP4LrG4YW2U7QBu3g4AzoAAIA/AACAP4CCTz1I4eq2742rO5EypbUFqZy7mm/LugAAgD8AAIA/89O3PVwTNbriQZ07QN81ti0LTLtaRba6AACAPwAAgD9NYLO9j+5dunDOjzolCbg2AI6bOr7gprkAAAAAAACAPyC0SL5I8bm8ur2bu/RWD7o7HCM+QDTuOgAAgD8AAIA/Zl5gO/ZUVLoKGx67vHu3MkCjq7pCnDQ6AACAPwAAgD/Noqk9KUgOusjGlDtUsys25eS5urpGIDUAAIA/AACAP01+uz1cFx+6gjrOOirhRDYlH4I7tgXwuQAAgD8AAIA/8DdtvvgzlzwFcn66xTXdONw1JL6GPqI5AACAPwAAgD+ThRa+n2LJu5tyETsLEp84LHgWPUaeMLoAAIA/AACAP2b2BD0pACy6CIxtO9xZE7ZmHoy73CyNugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQkKUL2haXkCUhpRSlIwBbJRN6AOMAXSUR0CDY89fTkQxdX2UKGgGaAloD0MI/d07akyRVkCUhpRSlGgVTegDaBZHQINtIJJGvwF1fZQoaAZoCWgPQwh1yw7xj5VhQJSGlFKUaBVN6ANoFkdAg2+ZFPSDy3V9lChoBmgJaA9DCH/1uG+1yV9AlIaUUpRoFU3oA2gWR0CDhfORDCxedX2UKGgGaAloD0MISn7Er1hUZECUhpRSlGgVTegDaBZHQIOG8neBQN11fZQoaAZoCWgPQwjuX1lpUslhQJSGlFKUaBVN6ANoFkdAg5QmcFyJbnV9lChoBmgJaA9DCCDwwADCcGNAlIaUUpRoFU3oA2gWR0CDldd30PH1dX2UKGgGaAloD0MIGTvhJTj9J0CUhpRSlGgVTQ4BaBZHQIOe+v+wTuh1fZQoaAZoCWgPQwiifazgt55SQJSGlFKUaBVN6ANoFkdAg6IlJYkmhXV9lChoBmgJaA9DCLdB7bd2XV5AlIaUUpRoFU3oA2gWR0CDqFho/RmcdX2UKGgGaAloD0MIzM8NTVmdYECUhpRSlGgVTegDaBZHQIOtkAggX/J1fZQoaAZoCWgPQwjdC8wKRSIlwJSGlFKUaBVL82gWR0CDsM8dxQzldX2UKGgGaAloD0MIt7bwvFSUR0CUhpRSlGgVS89oFkdAg7ceMAFPi3V9lChoBmgJaA9DCEsEqn8QyFZAlIaUUpRoFU3oA2gWR0CEAlTNt65YdX2UKGgGaAloD0MI2zaMguBeZUCUhpRSlGgVTegDaBZHQIQEEDIRywR1fZQoaAZoCWgPQwgNVMa/zwQxQJSGlFKUaBVL+2gWR0CEEjrgwXZXdX2UKGgGaAloD0MIWdx/ZDo+XkCUhpRSlGgVTegDaBZHQIQTJppN9IB1fZQoaAZoCWgPQwgAx549l9kqQJSGlFKUaBVL6GgWR0CEN6F5fMOgdX2UKGgGaAloD0MIMqoM424kVUCUhpRSlGgVTegDaBZHQIQ5frGBFux1fZQoaAZoCWgPQwidEhCTcDtKQJSGlFKUaBVNDAFoFkdAhD83ZXdTHnV9lChoBmgJaA9DCGkZqfdU/2JAlIaUUpRoFU3oA2gWR0CESgY3Ns3ydX2UKGgGaAloD0MIfxXgu80WYUCUhpRSlGgVTegDaBZHQIRKXVI7Njd1fZQoaAZoCWgPQwh4COOncZ9cQJSGlFKUaBVN6ANoFkdAhEvrTYukDnV9lChoBmgJaA9DCFMhHomXK11AlIaUUpRoFU3oA2gWR0CEVNwLE1l5dX2UKGgGaAloD0MItTf4wmT2YkCUhpRSlGgVTegDaBZHQIRo85IYm9h1fZQoaAZoCWgPQwiE8dO4N+VSQJSGlFKUaBVN6ANoFkdAhHbwWN3np3V9lChoBmgJaA9DCFiQZiwaGWRAlIaUUpRoFU3oA2gWR0CEf/YJVsDXdX2UKGgGaAloD0MIwW9DjNcFXUCUhpRSlGgVTegDaBZHQISDD0Dlo111fZQoaAZoCWgPQwiXyAVn8EBcQJSGlFKUaBVN6ANoFkdAhIky6UaAF3V9lChoBmgJaA9DCHS366Wpx2FAlIaUUpRoFU3oA2gWR0CEkeFwDNhWdX2UKGgGaAloD0MIsTVbecmMWkCUhpRSlGgVTegDaBZHQISYJJPIn0F1fZQoaAZoCWgPQwgDBd7JJwBjQJSGlFKUaBVN6ANoFkdAhOQ2EsasIXV9lChoBmgJaA9DCCL7IMuCK2BAlIaUUpRoFU3oA2gWR0CE5hkNFz+4dX2UKGgGaAloD0MIQndJnBUNMkCUhpRSlGgVTQMBaBZHQITxhX2dupF1fZQoaAZoCWgPQwicpzrk5vZgQJSGlFKUaBVN6ANoFkdAhR0pK8L8aXV9lChoBmgJaA9DCDv+CwQBKlpAlIaUUpRoFU3oA2gWR0CFHyJSiudPdX2UKGgGaAloD0MINDDysiaTY0CUhpRSlGgVTegDaBZHQIUkwi7kGRp1fZQoaAZoCWgPQwjgK7r1mhxfQJSGlFKUaBVN6ANoFkdAhS/i2MKkVXV9lChoBmgJaA9DCM/b2OzIAmNAlIaUUpRoFU3oA2gWR0CFMD63RXwLdX2UKGgGaAloD0MIIv32deDrYkCUhpRSlGgVTegDaBZHQIUx1d3Sro51fZQoaAZoCWgPQwiLiGLyBrpgQJSGlFKUaBVN6ANoFkdAhTrp5NXYDnV9lChoBmgJaA9DCI24ADTK8WJAlIaUUpRoFU3oA2gWR0CFTnu8brC4dX2UKGgGaAloD0MIXeFdLuIXYkCUhpRSlGgVTegDaBZHQIVb391loUV1fZQoaAZoCWgPQwj2s1iK5Jc8QJSGlFKUaBVNFwFoFkdAhVzGu1WsBHV9lChoBmgJaA9DCEnzx7Q2XmNAlIaUUpRoFU3oA2gWR0CFZOpF1B+ndX2UKGgGaAloD0MIxeQNMHNcYECUhpRSlGgVTegDaBZHQIVn6x5cC5p1fZQoaAZoCWgPQwgSonxBCz9kQJSGlFKUaBVN6ANoFkdAhXYAkTpPh3V9lChoBmgJaA9DCInqrYEtw2BAlIaUUpRoFU3oA2gWR0CFfF5sTFl1dX2UKGgGaAloD0MIm6vmOSK7YECUhpRSlGgVTegDaBZHQIXImH8CPp91fZQoaAZoCWgPQwj8q8d9q8JiQJSGlFKUaBVN6ANoFkdAhcqxCY1HfHV9lChoBmgJaA9DCO0ozlFHaGFAlIaUUpRoFU3oA2gWR0CF14XenAIqdX2UKGgGaAloD0MIJvvnaUDuYkCUhpRSlGgVTegDaBZHQIYKyg7HQyB1fZQoaAZoCWgPQwiu8ZnsH2JhQJSGlFKUaBVN6ANoFkdAhgz6ClJpWXV9lChoBmgJaA9DCA3H8xlQ5FpAlIaUUpRoFU3oA2gWR0CGE7PGhmGudX2UKGgGaAloD0MIiZenc0UxYUCUhpRSlGgVTegDaBZHQIYgLFqBVdZ1fZQoaAZoCWgPQwgzh6QWSuhhQJSGlFKUaBVN6ANoFkdAhiJ2+wkgOnV9lChoBmgJaA9DCHglyXN9L2FAlIaUUpRoFU3oA2gWR0CGLW1EVnEmdX2UKGgGaAloD0MI1xNdF359X0CUhpRSlGgVTegDaBZHQIZFOnXNC7d1fZQoaAZoCWgPQwigxr35DcdcQJSGlFKUaBVN6ANoFkdAhlSU52hZhnV9lChoBmgJaA9DCNhmYyXm9FVAlIaUUpRoFU3oA2gWR0CGVYCOmzjWdX2UKGgGaAloD0MIahZod0gYYkCUhpRSlGgVTegDaBZHQIZd3d69kBl1fZQoaAZoCWgPQwh16PS8G2pfQJSGlFKUaBVN6ANoFkdAhmDsqBmPHXV9lChoBmgJaA9DCHKo34WtC1tAlIaUUpRoFU3oA2gWR0CGbu2zfJmvdX2UKGgGaAloD0MIvady2lO8WkCUhpRSlGgVTegDaBZHQIZ1beANG3F1fZQoaAZoCWgPQwiY3Ciy1gJeQJSGlFKUaBVN6ANoFkdAhoJo7vG6w3V9lChoBmgJaA9DCLVsrS8SjV5AlIaUUpRoFU3oA2gWR0CGw8Cf6Gg0dX2UKGgGaAloD0MIoZ+p1y05XkCUhpRSlGgVTegDaBZHQIbQHO2RaHN1fZQoaAZoCWgPQwgyzAna5MZfQJSGlFKUaBVN6ANoFkdAhv5Vr6+FlHV9lChoBmgJaA9DCJQUWADTqGJAlIaUUpRoFU3oA2gWR0CHAFmr8zhxdX2UKGgGaAloD0MIA5mdRe9RW0CUhpRSlGgVTegDaBZHQIcGDtAs0551fZQoaAZoCWgPQwh8YwgAjhNjQJSGlFKUaBVN6ANoFkdAhxDmNBF/hHV9lChoBmgJaA9DCBDPEmQENmFAlIaUUpRoFU3oA2gWR0CHEt5pJwsHdX2UKGgGaAloD0MIJa5jXHHGW0CUhpRSlGgVTegDaBZHQIccDL+xW1d1fZQoaAZoCWgPQwiLxW8KK+1cQJSGlFKUaBVN6ANoFkdAhzABI4EOiHV9lChoBmgJaA9DCHP3OT5aF1dAlIaUUpRoFU3oA2gWR0CHPcotL+PzdX2UKGgGaAloD0MI7BLVWwNBW0CUhpRSlGgVTegDaBZHQIc+qJIlMRJ1fZQoaAZoCWgPQwgk0GBT53tjQJSGlFKUaBVN6ANoFkdAh0bezD4xlHV9lChoBmgJaA9DCL9hokGK0WJAlIaUUpRoFU3oA2gWR0CHSg6ySmqHdX2UKGgGaAloD0MIBWoxeBhxZECUhpRSlGgVTegDaBZHQIdY/IOpbUx1fZQoaAZoCWgPQwjyW3Sy1CxgQJSGlFKUaBVN6ANoFkdAh1+Z08vEj3V9lChoBmgJaA9DCGb5ugx/EmJAlIaUUpRoFU3oA2gWR0CHbNLnLaEjdX2UKGgGaAloD0MIVpqUgu6FYUCUhpRSlGgVTegDaBZHQIdu7FCLMs91fZQoaAZoCWgPQwjIJY48EGVfQJSGlFKUaBVN6ANoFkdAh7qO7pV0cXV9lChoBmgJaA9DCERtG0ZBgWhAlIaUUpRoFU3GAWgWR0CHvAbc45tFdX2UKGgGaAloD0MIKLfte1SlYkCUhpRSlGgVTaMBaBZHQIfP9pCa7Vd1fZQoaAZoCWgPQwgxPzc0ZWBZQJSGlFKUaBVN6ANoFkdAh+g9tuUD+3V9lChoBmgJaA9DCBvXv+sz+15AlIaUUpRoFU3oA2gWR0CH6ikona37dX2UKGgGaAloD0MIAaWhRiGRYkCUhpRSlGgVTegDaBZHQIfwO2d/axp1fZQoaAZoCWgPQwjMY83IIE5ZQJSGlFKUaBVN6ANoFkdAh/tSU9pyqHV9lChoBmgJaA9DCD8djxkoL2BAlIaUUpRoFU3oA2gWR0CH/VyIYWLxdX2UKGgGaAloD0MIt5ifG5qvXUCUhpRSlGgVTegDaBZHQIgHGNkvsZ51fZQoaAZoCWgPQwhA+bt31HQ2wJSGlFKUaBVNAQFoFkdAiBXqXWvr4XV9lChoBmgJaA9DCJesinCT7VpAlIaUUpRoFU3oA2gWR0CIKWJu2qkudX2UKGgGaAloD0MINEsC1NTkQkCUhpRSlGgVS9BoFkdAiCnq9wm3OXV9lChoBmgJaA9DCH7GhQOhqGFAlIaUUpRoFU3oA2gWR0CIKkSUTtb+dX2UKGgGaAloD0MIjUephCdZXkCUhpRSlGgVTegDaBZHQIgxtijL0SR1fZQoaAZoCWgPQwhBuW3fo+leQJSGlFKUaBVN6ANoFkdAiEO8ohIOH3V9lChoBmgJaA9DCDS/mgMEI1lAlIaUUpRoFU3oA2gWR0CISqMkQf6odX2UKGgGaAloD0MIisvxCkQUYkCUhpRSlGgVTegDaBZHQIhXuoDPnjh1fZQoaAZoCWgPQwgeFmpNcz9gQJSGlFKUaBVN6ANoFkdAiFnUcOskp3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}