File size: 1,931 Bytes
d9da0c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f22a43
d9da0c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f22a43
d9da0c1
 
 
 
 
 
 
 
 
 
 
 
5a0b406
4f22a43
858f522
4f22a43
858f522
4f22a43
858f522
4f22a43
858f522
4f22a43
5a0b406
d9da0c1
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

---
language: bn
tags:
- collaborative
- bengali
- NER
license: apache-2.0
datasets: xtreme 
metrics:
- Loss
- Accuracy
- Precision
- Recall
---

# sahajBERT Named Entity Recognition

## Model description

[sahajBERT](https://huggingface.co/neuropark/sahajBERT-NER) fine-tuned for NER using the bengali split of [WikiANN ](https://huggingface.co/datasets/wikiann). 

Named Entities predicted by the model:

| Label id | Label |
|:--------:|:----:|
|0 |O|
|1 |B-PER|
|2 |I-PER|
|3 |B-ORG|
|4 |I-ORG|
|5 |B-LOC|
|6 |I-LOC|

## Intended uses & limitations

#### How to use

You can use this model directly with a pipeline for masked language modeling:
```python
from transformers import AlbertForTokenClassification, TokenClassificationPipeline, PreTrainedTokenizerFast

# Initialize tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NER")

# Initialize model
model = AlbertForTokenClassification.from_pretrained("neuropark/sahajBERT-NER")

# Initialize pipeline
pipeline = TokenClassificationPipeline(tokenizer=tokenizer, model=model)

raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me
output = pipeline(raw_text)
```

#### Limitations and bias

<!-- Provide examples of latent issues and potential remediations. -->
WIP

## Training data

The model was initialized it with pre-trained weights of [sahajBERT](https://huggingface.co/neuropark/sahajBERT-NER) at step 19519 and trained on the bengali of [WikiANN ](https://huggingface.co/datasets/wikiann)

## Training procedure

Coming soon! 
<!-- ```bibtex
@inproceedings{...,
  year={2020}
}
``` -->

## Eval results


loss: 0.11714419722557068

accuracy: 0.9772286821705426

precision: 0.9585365853658536

recall: 0.9651277013752456

f1 : 0.9618208516886931


### BibTeX entry and citation info

Coming soon! 
<!-- ```bibtex
@inproceedings{...,
  year={2020}
}
``` -->