--- base_model: ntu-spml/distilhubert datasets: - marsyas/gtzan license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: ft-hubert-on-gtzan results: - task: type: audio-classification name: Audio Classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - type: accuracy value: 0.615 name: Accuracy --- # ft-hubert-on-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.7593 - Accuracy: 0.615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 50 | 1.9564 | 0.495 | | No log | 2.0 | 100 | 1.7593 | 0.615 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1