xgen-7b-8k-base / tokenization_xgen.py
katuni4ka's picture
fix tokenizer save_pretrained method
927e4b7 verified
raw
history blame
17.2 kB
# Copyright (c) 2023, salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: Apache-2.0
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
"""Tokenization classes for xgen."""
import os
import json
from typing import List, Optional, Tuple, Union
import warnings
import copy
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
from transformers.dynamic_module_utils import custom_object_save
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE, SPECIAL_TOKENS_MAP_FILE
try:
import tiktoken
except ModuleNotFoundError as e:
raise ModuleNotFoundError("XGen requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
logger = logging.get_logger(__name__)
MAX_MODEL_INPUT_SIZES = {
"Salesforce/xgen-7b-4k-base": 4096,
"Salesforce/xgen-7b-8k-base": 8192,
"Salesforce/xgen-7b-4k-inst": 4096,
"Salesforce/xgen-7b-8k-inst": 8192
}
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
if not add_special:
return tiktoken.get_encoding(base)
def include_whitespace(n_min=2, n_max=20):
whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
return whitespaces
def include_tabs(n_min=2, n_max=20):
tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
return tabs
def include_fim_tokens():
fim_tokens = [
"<fim_prefix>",
"<fim_middle>",
"<fim_suffix>",
"<fim_pad>",
"<filename>",
"<gh_stars>",
"<issue_start>",
"<issue_comment>",
"<issue_closed>",
"<jupyter_start>",
"<jupyter_text>",
"<jupyter_code>",
"<jupyter_output>",
"<empty_output>",
"<commit_before>",
"<commit_msg>",
"<commit_after>",
"<reponame>"
]
return fim_tokens
def include_additional_tokens():
tokens = []
tokens += [f"<dummy_{i}>" for i in range(4)]
tokens.append("<sep>") # 50317
tokens.append("<eom>") # 50318
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
return tokens
add_whitespaces = include_whitespace(n_min=2, n_max=32)
add_tabs = include_tabs(n_min=2, n_max=10)
fim_tokens = include_fim_tokens()
additional_tokens = include_additional_tokens()
tokenizer = tiktoken.get_encoding(base)
idx = tokenizer.n_vocab
bpe_ranks = tokenizer._mergeable_ranks
for wsp in add_whitespaces:
bpe_ranks[bytes(wsp, 'ascii')] = idx
idx += 1
for t in add_tabs:
bpe_ranks[bytes(t, 'ascii')] = idx
idx += 1
special_tokens = dict()
for sp in fim_tokens:
special_tokens[sp] = idx
idx += 1
for sp in additional_tokens:
special_tokens[sp] = idx
idx += 1
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
special_tokens[pad_token] = idx
idx += 1
# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
# If you're changing the set of special tokens, make sure to use a different name
# It should be clear from the name what behaviour to expect.
name=base.replace("base", "im"),
pat_str=tokenizer._pat_str,
mergeable_ranks=bpe_ranks,
special_tokens={
**tokenizer._special_tokens,
**special_tokens
}
)
return enc
class XgenTokenizer(PreTrainedTokenizer):
"""
Construct a Xgen tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
pad_token=None,
eos_token="<|endoftext|>",
add_eos_token=False,
add_special_tokens=True,
**kwargs,
):
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
self.add_eos_token = add_eos_token
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
super().__init__(
pad_token=pad_token_added,
eos_token=eos_token_added,
add_eos_token=add_eos_token,
add_special_tokens=add_special_tokens,
**kwargs,
)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.encoder.n_vocab
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.encoder.decode_single_token_bytes(i): i for i in range(self.vocab_size)}
return vocab
def _tokenize(self, text, **kwargs):
"""Returns a tokenized string."""
return self.encoder.encode(text, allowed_special="all")
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if isinstance(token, str):
return self.encoder.encode_single_token(token)
else:
return token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.encoder.decode_single_token_bytes(index).decode("utf-8")
def _decode(self, token_ids, skip_special_tokens: bool = False, **kwargs):
if not isinstance(token_ids, list):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [t for t in token_ids if t not in self.all_special_ids]
return self.encoder.decode(token_ids)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + eos_token_id
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(token_ids_1 + eos_token_id)
return output
# has no vocab file
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
return ()
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
legacy_format: Optional[bool] = None,
filename_prefix: Optional[str] = None,
push_to_hub: bool = False,
**kwargs,
) -> Tuple[str]:
"""
Save the full tokenizer state.
This method make sure the full tokenizer can then be re-loaded using the
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] class method..
Warning,None This won't save modifications you may have applied to the tokenizer after the instantiation (for
instance, modifying `tokenizer.do_lower_case` after creation).
Args:
save_directory (`str` or `os.PathLike`): The path to a directory where the tokenizer will be saved.
legacy_format (`bool`, *optional*):
Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON
format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate
added_tokens files.
If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with
"slow" tokenizers (not powered by the *tokenizers* library), so the tokenizer will not be able to be
loaded in the corresponding "slow" tokenizer.
If `True`, will save the tokenizer in legacy format. If the "slow" tokenizer doesn't exits, a value
error is raised.
filename_prefix (`str`, *optional*):
A prefix to add to the names of the files saved by the tokenizer.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
Returns:
A tuple of `str`: The files saved.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
special_tokens_map_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
)
tokenizer_config_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
)
tokenizer_config = copy.deepcopy(self.init_kwargs)
# Let's save the init kwargs
target_keys = set(self.init_kwargs.keys())
# Let's save the special tokens map (only the strings)
target_keys.update(["model_max_length", "clean_up_tokenization_spaces"])
for k in target_keys:
if hasattr(self, k) and k != "add_special_tokens":
tokenizer_config[k] = getattr(self, k)
# Let's make sure we properly save the special tokens.
tokenizer_config.update(self.special_tokens_map)
if self.chat_template is not None:
if isinstance(self.chat_template, dict):
# Chat template dicts are saved to the config as lists of dicts with fixed key names.
# They will be reconstructed as a single dict during loading.
tokenizer_config["chat_template"] = [{"name": k, "template": v} for k, v in self.chat_template.items()]
else:
tokenizer_config["chat_template"] = self.chat_template
if len(self.init_inputs) > 0:
tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
for file_id in self.vocab_files_names.keys():
tokenizer_config.pop(file_id, None)
# no typefields, this way old fast and slow can load it
tokenizer_config = self.convert_added_tokens(tokenizer_config, add_type_field=True, save=True)
# Process added tokens seperatly: allows previous versions to ignore it!
added_tokens = {}
for key, value in self.added_tokens_decoder.items():
added_tokens[key] = value.__getstate__()
tokenizer_config["added_tokens_decoder"] = added_tokens
# Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
tokenizer_class = self.__class__.__name__
# Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
tokenizer_class = tokenizer_class[:-4]
tokenizer_config["tokenizer_class"] = tokenizer_class
if getattr(self, "_auto_map", None) is not None:
tokenizer_config["auto_map"] = self._auto_map
if getattr(self, "_processor_class", None) is not None:
tokenizer_config["processor_class"] = self._processor_class
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=tokenizer_config)
# remove private information
if "name_or_path" in tokenizer_config:
tokenizer_config.pop("name_or_path")
tokenizer_config.pop("special_tokens_map_file", None)
tokenizer_config.pop("tokenizer_file", None)
with open(tokenizer_config_file, "w", encoding="utf-8") as f:
out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
f.write(out_str)
logger.info(f"tokenizer config file saved in {tokenizer_config_file}")
# Sanitize AddedTokens in special_tokens_map
# kept for forward compatibility, will be removed in transoformers 5. Typefields are not saved for FC, special should not be save either
write_dict = self.convert_added_tokens(self.special_tokens_map_extended, save=True, add_type_field=False)
with open(special_tokens_map_file, "w", encoding="utf-8") as f:
out_str = json.dumps(write_dict, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
f.write(out_str)
logger.info(f"Special tokens file saved in {special_tokens_map_file}")
file_names = (tokenizer_config_file, special_tokens_map_file)
save_files = self._save_pretrained(
save_directory=save_directory,
file_names=file_names,
legacy_format=legacy_format,
filename_prefix=filename_prefix,
)
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=kwargs.get("token"),
)
return save_files