Saketh commited on
Commit
5039b9c
1 Parent(s): 7e26f9c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -23
README.md CHANGED
@@ -22,21 +22,25 @@ pipeline_tag: token-classification
22
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
23
  should probably proofread and complete it, then remove this comment. -->
24
 
 
25
  # entity-recognition-general-sota-v1-finetuned-ner
26
 
27
  This model is a fine-tuned version of [numind/entity-recognition-general-sota-v1](https://huggingface.co/numind/entity-recognition-general-sota-v1) on Babelscape/MultiNerd dataset.
28
- The dataset if filtered on english language and sampled first 1M on train and 100k on validation.
29
- further filtered with data containing atleast one tag from labels2ids mentioned below.
30
- Train data - 131280 items
31
- Eval data - 16410 items
32
- It achieves the following results on the evaluation set:
33
  - Loss: 0.0396
34
  - Precision: 0.9138
35
  - Recall: 0.9146
36
  - F1: 0.9142
37
  - Accuracy: 0.9857
38
 
39
- ## Model description
 
 
 
 
 
 
40
 
41
  Trained on all tags from the MultiNERD dataset.
42
 
@@ -74,24 +78,10 @@ labels2ids = {
74
  "I-VEHI": 30,
75
  }
76
 
77
- ## Intended uses & limitations
78
-
79
- More information needed
80
-
81
- ## Training and evaluation data
82
-
83
- Evaluation on test set:
84
- {'eval_loss': 0.02707073651254177,
85
- 'eval_precision': 0.9378337879893957,
86
- 'eval_recall': 0.9518034704620784,
87
- 'eval_f1': 0.9447669917943954,
88
- 'eval_accuracy': 0.9901678553418342,
89
- 'eval_runtime': 133.0665,
90
- 'eval_samples_per_second': 247.305,
91
- 'eval_steps_per_second': 30.917}
92
-
93
  ## Training procedure
94
 
 
 
95
  ### Training hyperparameters
96
 
97
  The following hyperparameters were used during training:
@@ -103,12 +93,21 @@ The following hyperparameters were used during training:
103
  - lr_scheduler_type: linear
104
  - num_epochs: 1
105
 
106
- ### Training results
107
 
108
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
109
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
110
  | 0.0323 | 1.0 | 6564 | 0.0396 | 0.9138 | 0.9146 | 0.9142 | 0.9857 |
111
 
 
 
 
 
 
 
 
 
 
112
 
113
  ### Framework versions
114
 
 
22
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
23
  should probably proofread and complete it, then remove this comment. -->
24
 
25
+ ## Model description
26
  # entity-recognition-general-sota-v1-finetuned-ner
27
 
28
  This model is a fine-tuned version of [numind/entity-recognition-general-sota-v1](https://huggingface.co/numind/entity-recognition-general-sota-v1) on Babelscape/MultiNerd dataset.
29
+
30
+ It achieves the following results on the validation set:
 
 
 
31
  - Loss: 0.0396
32
  - Precision: 0.9138
33
  - Recall: 0.9146
34
  - F1: 0.9142
35
  - Accuracy: 0.9857
36
 
37
+
38
+ ## Training and evaluation data
39
+
40
+ The dataset if filtered on english language and sampled first 1M on train and 100k on validation.
41
+ further filtered with data containing atleast one tag from labels2ids mentioned below.
42
+ Training data - 131280 items
43
+ Validation data - 16410 items
44
 
45
  Trained on all tags from the MultiNERD dataset.
46
 
 
78
  "I-VEHI": 30,
79
  }
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  ## Training procedure
82
 
83
+ HF Trainer module
84
+
85
  ### Training hyperparameters
86
 
87
  The following hyperparameters were used during training:
 
93
  - lr_scheduler_type: linear
94
  - num_epochs: 1
95
 
96
+ ### Training & Test set evaluation results
97
 
98
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
99
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
100
  | 0.0323 | 1.0 | 6564 | 0.0396 | 0.9138 | 0.9146 | 0.9142 | 0.9857 |
101
 
102
+ Evaluation on test set:
103
+ {'eval_loss': 0.02707073651254177,
104
+ 'eval_precision': 0.9378337879893957,
105
+ 'eval_recall': 0.9518034704620784,
106
+ 'eval_f1': 0.9447669917943954,
107
+ 'eval_accuracy': 0.9901678553418342,
108
+ 'eval_runtime': 133.0665,
109
+ 'eval_samples_per_second': 247.305,
110
+ 'eval_steps_per_second': 30.917}
111
 
112
  ### Framework versions
113