Update README.md
Browse files
README.md
CHANGED
@@ -22,21 +22,25 @@ pipeline_tag: token-classification
|
|
22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
23 |
should probably proofread and complete it, then remove this comment. -->
|
24 |
|
|
|
25 |
# entity-recognition-general-sota-v1-finetuned-ner
|
26 |
|
27 |
This model is a fine-tuned version of [numind/entity-recognition-general-sota-v1](https://huggingface.co/numind/entity-recognition-general-sota-v1) on Babelscape/MultiNerd dataset.
|
28 |
-
|
29 |
-
|
30 |
-
Train data - 131280 items
|
31 |
-
Eval data - 16410 items
|
32 |
-
It achieves the following results on the evaluation set:
|
33 |
- Loss: 0.0396
|
34 |
- Precision: 0.9138
|
35 |
- Recall: 0.9146
|
36 |
- F1: 0.9142
|
37 |
- Accuracy: 0.9857
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
Trained on all tags from the MultiNERD dataset.
|
42 |
|
@@ -74,24 +78,10 @@ labels2ids = {
|
|
74 |
"I-VEHI": 30,
|
75 |
}
|
76 |
|
77 |
-
## Intended uses & limitations
|
78 |
-
|
79 |
-
More information needed
|
80 |
-
|
81 |
-
## Training and evaluation data
|
82 |
-
|
83 |
-
Evaluation on test set:
|
84 |
-
{'eval_loss': 0.02707073651254177,
|
85 |
-
'eval_precision': 0.9378337879893957,
|
86 |
-
'eval_recall': 0.9518034704620784,
|
87 |
-
'eval_f1': 0.9447669917943954,
|
88 |
-
'eval_accuracy': 0.9901678553418342,
|
89 |
-
'eval_runtime': 133.0665,
|
90 |
-
'eval_samples_per_second': 247.305,
|
91 |
-
'eval_steps_per_second': 30.917}
|
92 |
-
|
93 |
## Training procedure
|
94 |
|
|
|
|
|
95 |
### Training hyperparameters
|
96 |
|
97 |
The following hyperparameters were used during training:
|
@@ -103,12 +93,21 @@ The following hyperparameters were used during training:
|
|
103 |
- lr_scheduler_type: linear
|
104 |
- num_epochs: 1
|
105 |
|
106 |
-
### Training results
|
107 |
|
108 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
109 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
110 |
| 0.0323 | 1.0 | 6564 | 0.0396 | 0.9138 | 0.9146 | 0.9142 | 0.9857 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
### Framework versions
|
114 |
|
|
|
22 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
23 |
should probably proofread and complete it, then remove this comment. -->
|
24 |
|
25 |
+
## Model description
|
26 |
# entity-recognition-general-sota-v1-finetuned-ner
|
27 |
|
28 |
This model is a fine-tuned version of [numind/entity-recognition-general-sota-v1](https://huggingface.co/numind/entity-recognition-general-sota-v1) on Babelscape/MultiNerd dataset.
|
29 |
+
|
30 |
+
It achieves the following results on the validation set:
|
|
|
|
|
|
|
31 |
- Loss: 0.0396
|
32 |
- Precision: 0.9138
|
33 |
- Recall: 0.9146
|
34 |
- F1: 0.9142
|
35 |
- Accuracy: 0.9857
|
36 |
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
The dataset if filtered on english language and sampled first 1M on train and 100k on validation.
|
41 |
+
further filtered with data containing atleast one tag from labels2ids mentioned below.
|
42 |
+
Training data - 131280 items
|
43 |
+
Validation data - 16410 items
|
44 |
|
45 |
Trained on all tags from the MultiNERD dataset.
|
46 |
|
|
|
78 |
"I-VEHI": 30,
|
79 |
}
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
## Training procedure
|
82 |
|
83 |
+
HF Trainer module
|
84 |
+
|
85 |
### Training hyperparameters
|
86 |
|
87 |
The following hyperparameters were used during training:
|
|
|
93 |
- lr_scheduler_type: linear
|
94 |
- num_epochs: 1
|
95 |
|
96 |
+
### Training & Test set evaluation results
|
97 |
|
98 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
99 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
100 |
| 0.0323 | 1.0 | 6564 | 0.0396 | 0.9138 | 0.9146 | 0.9142 | 0.9857 |
|
101 |
|
102 |
+
Evaluation on test set:
|
103 |
+
{'eval_loss': 0.02707073651254177,
|
104 |
+
'eval_precision': 0.9378337879893957,
|
105 |
+
'eval_recall': 0.9518034704620784,
|
106 |
+
'eval_f1': 0.9447669917943954,
|
107 |
+
'eval_accuracy': 0.9901678553418342,
|
108 |
+
'eval_runtime': 133.0665,
|
109 |
+
'eval_samples_per_second': 247.305,
|
110 |
+
'eval_steps_per_second': 30.917}
|
111 |
|
112 |
### Framework versions
|
113 |
|