Update README.md
Browse files
README.md
CHANGED
@@ -45,7 +45,7 @@ pipeline_tag: text-generation
|
|
45 |
<div style="display: inline-block;">
|
46 |
|
47 |
<a rel="noopener nofollow" href="https://www.modelscope.cn/organization/sustc/">
|
48 |
-
<img src="https://img.shields.io/badge
|
49 |
</a>
|
50 |
|
51 |
</div>
|
@@ -78,36 +78,58 @@ pipeline_tag: text-generation
|
|
78 |
|
79 |
# News
|
80 |
|
81 |
-
- 2023-12-
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
83 |
and surpassed all models under 70B.
|
84 |
|
85 |
-
- 2023-12-01: SUS-Chat-34B is now
|
|
|
86 |
|
87 |
-
#
|
88 |
|
89 |
<img src="https://hackmd.io/_uploads/HJlDtzhBa.png" id="fig-sus"
|
90 |
alt="Figure 1: DALL·E 2023-12-01 11.03.28 - An imposing, majestic wild boar combined with elements of a futuristic transformer robot. The boar itself should be intricately blended with these tra" />
|
91 |
|
92 |
-
**SUS-Chat** is a 34B bilingual Chinese-English dialogue model,
|
93 |
-
released by the **Southern University of Science and
|
94 |
-
**
|
95 |
-
|
96 |
-
`01-ai/Yi-34B` and has been
|
97 |
-
|
98 |
-
capabilities of the base model,
|
99 |
-
model’s response to human
|
100 |
-
fine-tuning and excels at
|
101 |
-
|
102 |
-
|
103 |
-
enhancing the usability of
|
|
|
104 |
|
105 |
It has surpassed all models of the same size in almost all benchmark
|
106 |
tests and is better suited to meet the practical needs of complex
|
107 |
multilingual tasks. Compared to larger models, SUS-Chat-34B remains
|
108 |
-
highly competitive and achieved state-of-the-art performance in our
|
109 |
comprehensive evaluations.
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
SUS-Chat powerfully demonstrates that through the right instruction
|
112 |
fine-tuning, academic institutions can achieve better performance
|
113 |
without increasing model parameters, using open-source datasets and
|
@@ -124,10 +146,9 @@ open-sourced the evaluation framework
|
|
124 |
replication and comparison by other researchers.
|
125 |
|
126 |
In TLEM, we utilized various benchmark tests including MMLU, CMMLU,
|
127 |
-
C-Eval, BBH, GSM-8K, and MATH,
|
128 |
-
|
129 |
-
|
130 |
-
incorporated
|
131 |
[lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) to test
|
132 |
SUS-Chat and similar models on winogrande, hellaswag, arc, and
|
133 |
truthful-qa, assessing the model’s common-sense reasoning ability and
|
@@ -136,28 +157,176 @@ susceptibility to illusions.
|
|
136 |
Overall, the SUS-Chat-34B model significantly outperformed models of
|
137 |
similar scale and achieved the most advanced comprehensive performance.
|
138 |
|
139 |
-
| model | mmlu-chat | cmmlu-chat | ceval-chat | gsm8k | BBH | MATH | winogrande | arc | hellaswag | truthfulqa | average |
|
140 |
-
|:------------------|----------:|-----------:|-----------:|------:|------:|------:|-----------:|------:|----------:|-----------:|--------:|
|
141 |
-
| GPT-4 | 83 | 71 | 69.9 | 91.4 | 86.7 | 45.8 | 87.5 | 94.5 | 91.4 | nan | 80.1333 |
|
142 |
-
| SUS-Chat-34B | 77.35 | 78.68 | 82.42 | 80.06 | 67.62 | 28.8 | 81.22 | 81.54 | 83.79 | 57.47 | 71.895 |
|
143 |
-
| Qwen-72B-Chat | 74.52 | 77.02 | 77.22 | 76.57 | 72.63 | 35.9 | 80.58 | 81.29 | 87.02 | 50.64 | 71.339 |
|
144 |
-
| DeepSeek-67B-Chat | 69.43 | 48.51 | 59.7 | 74.45 | 69.73 | 29.56 | 76.09 | 82.1 | 86.06 | 56.37 | 65.2 |
|
145 |
-
| OrionStar-34B | 68.51 | 66.88 | 65.13 | 54.36 | 62.88 | 12.8 | 77.27 | 80.19 | 84.54 | 53.24 | 62.58 |
|
146 |
-
| Yi-34B-Chat | 66.96 | 55.16 | 77.16 | 63.76 | 61.54 | 10.02 | 76.64 | 70.66 | 82.29 | 54.57 | 61.876 |
|
147 |
-
|
148 |
<img
|
149 |
src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png"
|
150 |
id="fig-bench" alt="Figure 2: Benchmark" />
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
# Usage
|
153 |
|
154 |
SUS-Chat-34B is a standard LLaMA model and should be seamlessly
|
155 |
compatible with the LLaMA ecosystem. We provide the following example to
|
156 |
demonstrate how it can be used for multi-turn dialogues.
|
157 |
|
158 |
-
|
159 |
-
|
|
|
160 |
|
|
|
|
|
|
|
161 |
|
162 |
def chat_template(messages):
|
163 |
history = ""
|
@@ -230,5 +399,5 @@ model.
|
|
230 |
|
231 |
This model is developed entirely for academic research and free
|
232 |
commercial use, but it must adhere to the
|
233 |
-
[license](https://github.com/
|
234 |
-
from 01-ai.
|
|
|
45 |
<div style="display: inline-block;">
|
46 |
|
47 |
<a rel="noopener nofollow" href="https://www.modelscope.cn/organization/sustc/">
|
48 |
+
<img src="https://img.shields.io/badge/🤖ModelScope-sustc-blue" style="margin: 0 0;">
|
49 |
</a>
|
50 |
|
51 |
</div>
|
|
|
78 |
|
79 |
# News
|
80 |
|
81 |
+
- 2023-12-06: Try [SUS-Chat-34B
|
82 |
+
chat-ui](https://huggingface.co/spaces/SUSTech/SUS-Chat-34B).
|
83 |
+
|
84 |
+
- 2023-12-05: SUS-Chat-34B is now available on
|
85 |
+
[ModelScope🤖](https://www.modelscope.cn/models/SUSTC/SUS-Chat-34B/summary)
|
86 |
+
|
87 |
+
- 2023-12-05: SUS-Chat-34B is ranked 2nd in [Open LLM
|
88 |
leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
89 |
and surpassed all models under 70B.
|
90 |
|
91 |
+
- 2023-12-01: SUS-Chat-34B is now available on
|
92 |
+
[HuggingFace🤗](https://huggingface.co/SUSTech/SUS-Chat-34B).
|
93 |
|
94 |
+
# Introduction
|
95 |
|
96 |
<img src="https://hackmd.io/_uploads/HJlDtzhBa.png" id="fig-sus"
|
97 |
alt="Figure 1: DALL·E 2023-12-01 11.03.28 - An imposing, majestic wild boar combined with elements of a futuristic transformer robot. The boar itself should be intricately blended with these tra" />
|
98 |
|
99 |
+
**SUS-Chat-34B** is a 34B bilingual Chinese-English dialogue model,
|
100 |
+
jointly released by the **[Southern University of Science and
|
101 |
+
Technology](https://huggingface.co/SUSTech)** and
|
102 |
+
**[IDEA-CCNL](https://huggingface.co/IDEA-CCNL)**. This model is based
|
103 |
+
on [`01-ai/Yi-34B`](https://huggingface.co/01-ai/Yi-34B) and has been
|
104 |
+
fine-tuned on millions of high-quality, multilingual instruction data.
|
105 |
+
While maintaining the strong language capabilities of the base model,
|
106 |
+
the SUS-Chat-34B model has improved the model’s response to human
|
107 |
+
instructions through high-quality instruction fine-tuning and excels at
|
108 |
+
imitating human thought processes through chains of thought. It
|
109 |
+
introduces inter-instruction attention sharing in long texts, expanding
|
110 |
+
the window size from 4K to 8K, significantly enhancing the usability of
|
111 |
+
multi-turn dialogues.
|
112 |
|
113 |
It has surpassed all models of the same size in almost all benchmark
|
114 |
tests and is better suited to meet the practical needs of complex
|
115 |
multilingual tasks. Compared to larger models, SUS-Chat-34B remains
|
116 |
+
highly competitive and has achieved state-of-the-art performance in our
|
117 |
comprehensive evaluations.
|
118 |
|
119 |
+
SUS-Chat-34B model has the following highlights: 1. Large-scale complex
|
120 |
+
instruction following data: Trained with 1.4 billion tokens of
|
121 |
+
high-quality complex instruction data, covering Chinese and English,
|
122 |
+
multi-turn dialogues, mathematics, reasoning, and various other types of
|
123 |
+
instruction data; 2. Strong performance in general tasks: The
|
124 |
+
SUS-Chat-34B model excels in numerous mainstream Chinese and English
|
125 |
+
tasks, surpassing other open-source instruction fine-tuned models of the
|
126 |
+
same parameter scale. It also competes well against models with larger
|
127 |
+
parameter scales; 3. Longer context window and excellent multi-turn
|
128 |
+
dialogue capabilities: Currently, SUS-Chat-34B supports an 8K context
|
129 |
+
window, and is trained with a large amount of multi-turn instruction and
|
130 |
+
single-multi-turn mixed data, demonstrating remarkable capabilities in
|
131 |
+
long-text dialogue information focus and instruction follow-up.
|
132 |
+
|
133 |
SUS-Chat powerfully demonstrates that through the right instruction
|
134 |
fine-tuning, academic institutions can achieve better performance
|
135 |
without increasing model parameters, using open-source datasets and
|
|
|
146 |
replication and comparison by other researchers.
|
147 |
|
148 |
In TLEM, we utilized various benchmark tests including MMLU, CMMLU,
|
149 |
+
C-Eval, BBH, GSM-8K, and MATH, to measure the model’s knowledge and
|
150 |
+
thinking capabilities. In these metrics, the SUS-Chat-34B model achieved
|
151 |
+
state-of-the-art performance. Additionally, we incorporated
|
|
|
152 |
[lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) to test
|
153 |
SUS-Chat and similar models on winogrande, hellaswag, arc, and
|
154 |
truthful-qa, assessing the model’s common-sense reasoning ability and
|
|
|
157 |
Overall, the SUS-Chat-34B model significantly outperformed models of
|
158 |
similar scale and achieved the most advanced comprehensive performance.
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
<img
|
161 |
src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png"
|
162 |
id="fig-bench" alt="Figure 2: Benchmark" />
|
163 |
|
164 |
+
<div>
|
165 |
+
|
166 |
+
<table>
|
167 |
+
<colgroup>
|
168 |
+
<col style="width: 50%" />
|
169 |
+
<col style="width: 50%" />
|
170 |
+
</colgroup>
|
171 |
+
<tbody>
|
172 |
+
<tr class="odd">
|
173 |
+
<td style="text-align: center;"><div width="50.0%"
|
174 |
+
data-layout-align="center">
|
175 |
+
<h2 id="english-understanding">English Understanding</h2>
|
176 |
+
<table>
|
177 |
+
<thead>
|
178 |
+
<tr class="header">
|
179 |
+
<th style="text-align: right;">Model</th>
|
180 |
+
<th style="text-align: center;">mmlu (0-shot)</th>
|
181 |
+
</tr>
|
182 |
+
</thead>
|
183 |
+
<tbody>
|
184 |
+
<tr class="odd">
|
185 |
+
<td style="text-align: right;">GPT-4</td>
|
186 |
+
<td style="text-align: center;">83</td>
|
187 |
+
</tr>
|
188 |
+
<tr class="even">
|
189 |
+
<td style="text-align: right;">SUS-Chat-34B</td>
|
190 |
+
<td style="text-align: center;"><span
|
191 |
+
class="math inline">$\underline{74.35}$</span></td>
|
192 |
+
</tr>
|
193 |
+
<tr class="odd">
|
194 |
+
<td style="text-align: right;">Qwen-72b-Chat</td>
|
195 |
+
<td style="text-align: center;"><strong>74.52</strong></td>
|
196 |
+
</tr>
|
197 |
+
<tr class="even">
|
198 |
+
<td style="text-align: right;">Deepseek-68b-Chat</td>
|
199 |
+
<td style="text-align: center;">69.43</td>
|
200 |
+
</tr>
|
201 |
+
<tr class="odd">
|
202 |
+
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
|
203 |
+
<td style="text-align: center;">68.51</td>
|
204 |
+
</tr>
|
205 |
+
<tr class="even">
|
206 |
+
<td style="text-align: right;">Yi-34B-Chat</td>
|
207 |
+
<td style="text-align: center;">66.96</td>
|
208 |
+
</tr>
|
209 |
+
</tbody>
|
210 |
+
</table>
|
211 |
+
</div></td>
|
212 |
+
<td style="text-align: center;"><div width="50.0%"
|
213 |
+
data-layout-align="center">
|
214 |
+
<h2 id="chinese-capabilities">Chinese Capabilities</h2>
|
215 |
+
<table>
|
216 |
+
<colgroup>
|
217 |
+
<col style="width: 34%" />
|
218 |
+
<col style="width: 32%" />
|
219 |
+
<col style="width: 32%" />
|
220 |
+
</colgroup>
|
221 |
+
<thead>
|
222 |
+
<tr class="header">
|
223 |
+
<th style="text-align: right;">Model</th>
|
224 |
+
<th style="text-align: center;">cmmlu (0-shot)</th>
|
225 |
+
<th style="text-align: center;">C-Eval (0-shot)<a href="#fn1"
|
226 |
+
class="footnote-ref" id="fnref1"
|
227 |
+
role="doc-noteref"><sup>1</sup></a></th>
|
228 |
+
</tr>
|
229 |
+
</thead>
|
230 |
+
<tbody>
|
231 |
+
<tr class="odd">
|
232 |
+
<td style="text-align: right;">GPT-4</td>
|
233 |
+
<td style="text-align: center;">71</td>
|
234 |
+
<td style="text-align: center;">69.9</td>
|
235 |
+
</tr>
|
236 |
+
<tr class="even">
|
237 |
+
<td style="text-align: right;">SUS-Chat-34B</td>
|
238 |
+
<td style="text-align: center;"><strong>78.68</strong></td>
|
239 |
+
<td style="text-align: center;"><strong>82.42</strong></td>
|
240 |
+
</tr>
|
241 |
+
<tr class="odd">
|
242 |
+
<td style="text-align: right;">Qwen-72b-Chat</td>
|
243 |
+
<td style="text-align: center;"><span
|
244 |
+
class="math inline">$\underline{77.02}$</span></td>
|
245 |
+
<td style="text-align: center;"><span
|
246 |
+
class="math inline">$\underline{77.22}$</span></td>
|
247 |
+
</tr>
|
248 |
+
<tr class="even">
|
249 |
+
<td style="text-align: right;">Deepseek-68b-Chat</td>
|
250 |
+
<td style="text-align: center;">48.51</td>
|
251 |
+
<td style="text-align: center;">59.7</td>
|
252 |
+
</tr>
|
253 |
+
<tr class="odd">
|
254 |
+
<td style="text-align: right;">OrionStar-Yi-34B-Chat</td>
|
255 |
+
<td style="text-align: center;">66.88</td>
|
256 |
+
<td style="text-align: center;">65.13</td>
|
257 |
+
</tr>
|
258 |
+
<tr class="even">
|
259 |
+
<td style="text-align: right;">Yi-34B-Chat</td>
|
260 |
+
<td style="text-align: center;">55.16</td>
|
261 |
+
<td style="text-align: center;">77.16</td>
|
262 |
+
</tr>
|
263 |
+
</tbody>
|
264 |
+
</table>
|
265 |
+
</div></td>
|
266 |
+
</tr>
|
267 |
+
</tbody>
|
268 |
+
</table>
|
269 |
+
<section id="footnotes" class="footnotes footnotes-end-of-document"
|
270 |
+
role="doc-endnotes">
|
271 |
+
<hr />
|
272 |
+
<ol>
|
273 |
+
<li id="fn1"><p>C-Eval results are evaluated on the validation
|
274 |
+
datasets<a href="#fnref1" class="footnote-back"
|
275 |
+
role="doc-backlink">↩︎</a></p></li>
|
276 |
+
</ol>
|
277 |
+
</section>
|
278 |
+
|
279 |
+
</div>
|
280 |
+
|
281 |
+
## Math & Reasoning
|
282 |
+
|
283 |
+
| Model | gsm8k (0-shot) | MATH (0-shot) | BBH (0-shot) |
|
284 |
+
|----------------------:|:-------------------:|:-------------------:|:-------------------:|
|
285 |
+
| GPT-4 | 91.4 | 45.8 | 86.7 |
|
286 |
+
| SUS-Chat-34B | **80.06** | 28.7 | 67.62 |
|
287 |
+
| Qwen-72b-Chat | $\underline{76.57}$ | **35.9** | **72.63** |
|
288 |
+
| Deepseek-68b-Chat | 74.45 | $\underline{29.56}$ | $\underline{69.73}$ |
|
289 |
+
| OrionStar-Yi-34B-Chat | 54.36 | 12.8 | 62.88 |
|
290 |
+
| Yi-34B-Chat | 63.76 | 10.02 | 61.54 |
|
291 |
+
|
292 |
+
## More Tasks
|
293 |
+
|
294 |
+
| Model | winogrande (5-shot) | arc (25-shot) | hellaswag (10-shot) | TruthfulQA mc1 (0-shot) | TruthfulQA mc2 (0-shot) |
|
295 |
+
|----------------------:|:-------------------:|:-------------------:|:-------------------:|:-----------------------:|:-----------------------:|
|
296 |
+
| GPT-4 | — | 94.5 | 91.4 | 59.00 | — |
|
297 |
+
| SUS-Chat-34B | **81.22** | $\underline{81.54}$ | 83.79 | **40.64** | **57.47** |
|
298 |
+
| Qwen-72b-Chat | 76.09 | **82.10** | $\underline{86.06}$ | 39.17 | $\underline{56.37}$ |
|
299 |
+
| Deepseek-68b-Chat | $\underline{80.58}$ | 81.29 | **87.02** | $\underline{40.02}$ | 50.64 |
|
300 |
+
| OrionStar-Yi-34B-Chat | 77.27 | 80.19 | 84.54 | 36.47 | 53.24 |
|
301 |
+
| Yi-34B-Chat | 76.64 | 70.66 | 82.29 | 38.19 | 54.57 |
|
302 |
+
|
303 |
+
## Overall
|
304 |
+
|
305 |
+
| Model | Average |
|
306 |
+
|----------------------:|:---------:|
|
307 |
+
| SUS-Chat-34B | **69.05** |
|
308 |
+
| Qwen-72b-Chat | 68.41 |
|
309 |
+
| Deepseek-68b-Chat | 62.91 |
|
310 |
+
| OrionStar-Yi-34B-Chat | 60.21 |
|
311 |
+
| Yi-34B-Chat | 59.72 |
|
312 |
+
|
313 |
+
To reproduce the results, please start a corresponding vllm server and
|
314 |
+
refer to
|
315 |
+
[here](https://sustech-tlem.static.hf.space/index.html#start-evaluating-your-model-in-3-line).
|
316 |
+
|
317 |
# Usage
|
318 |
|
319 |
SUS-Chat-34B is a standard LLaMA model and should be seamlessly
|
320 |
compatible with the LLaMA ecosystem. We provide the following example to
|
321 |
demonstrate how it can be used for multi-turn dialogues.
|
322 |
|
323 |
+
Feel free to [open an
|
324 |
+
issue](https://github.com/SUSTech-IDEA/SUS-Chat/issues) if you have any
|
325 |
+
questions.
|
326 |
|
327 |
+
``` python
|
328 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer # 🤗 Transformers, or
|
329 |
+
# from modelscope import AutoModelForCausalLM, AutoTokenizer # 🤖 ModelScope
|
330 |
|
331 |
def chat_template(messages):
|
332 |
history = ""
|
|
|
399 |
|
400 |
This model is developed entirely for academic research and free
|
401 |
commercial use, but it must adhere to the
|
402 |
+
[license](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt)
|
403 |
+
from [01-ai](https://huggingface.co/01-ai).
|