Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,11 @@ pipeline_tag: text-generation
|
|
13 |
|
14 |
# 🐷SUS-Chat: Instruction tuning done right
|
15 |
|
|
|
|
|
|
|
16 |
|
|
|
17 |
|
18 |
<div align="center">
|
19 |
|
@@ -83,14 +87,15 @@ pipeline_tag: text-generation
|
|
83 |
# Inrtoduction
|
84 |
|
85 |
<img src="https://hackmd.io/_uploads/HJlDtzhBa.png" id="fig-sus"
|
86 |
-
alt="Figure
|
87 |
|
88 |
**SUS-Chat** is a 34B bilingual Chinese-English dialogue model, jointly
|
89 |
released by the **Southern University of Science and Technology** and
|
90 |
-
**Cognitive Computing and Natural Language Center of International
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
instructions through high-quality instruction fine-tuning and excels at
|
95 |
imitating human thought processes through chains of thought. It
|
96 |
introduces inter-instruction attention sharing in long texts, expanding
|
@@ -142,7 +147,7 @@ similar scale and achieved the most advanced comprehensive performance.
|
|
142 |
|
143 |
<img
|
144 |
src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png"
|
145 |
-
id="fig-bench" alt="Figure
|
146 |
|
147 |
# Usage
|
148 |
|
@@ -174,10 +179,12 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
174 |
|
175 |
messages = [{"role": "user", "content": "hi"}]
|
176 |
|
177 |
-
input_ids = tokenizer.encode(
|
178 |
-
|
|
|
|
|
179 |
response = tokenizer.decode(
|
180 |
-
output_ids[0][input_ids.shape[1] :], skip_special_tokens=
|
181 |
)
|
182 |
|
183 |
messages.append({"role": "assistant", "content": response})
|
@@ -186,10 +193,12 @@ messages.append({"role": "assistant", "content": response})
|
|
186 |
|
187 |
messages.append({"role": "user", "content": "What is the capital of China?"})
|
188 |
|
189 |
-
input_ids = tokenizer.encode(
|
190 |
-
|
|
|
|
|
191 |
response = tokenizer.decode(
|
192 |
-
output_ids[0][input_ids.shape[1] :], skip_special_tokens=
|
193 |
)
|
194 |
|
195 |
messages.append({"role": "assistant", "content": response})
|
|
|
13 |
|
14 |
# 🐷SUS-Chat: Instruction tuning done right
|
15 |
|
16 |
+
<p align="left">
|
17 |
+
<a href="README_CN.md">中文</a>  |  English 
|
18 |
+
</p>
|
19 |
|
20 |
+
<br><br>
|
21 |
|
22 |
<div align="center">
|
23 |
|
|
|
87 |
# Inrtoduction
|
88 |
|
89 |
<img src="https://hackmd.io/_uploads/HJlDtzhBa.png" id="fig-sus"
|
90 |
+
alt="Figure 1: DALL·E 2023-12-01 11.03.28 - An imposing, majestic wild boar combined with elements of a futuristic transformer robot. The boar itself should be intricately blended with these tra" />
|
91 |
|
92 |
**SUS-Chat** is a 34B bilingual Chinese-English dialogue model, jointly
|
93 |
released by the **Southern University of Science and Technology** and
|
94 |
+
**Cognitive Computing and Natural Language Center of International
|
95 |
+
Digital Economy Academy (IDEA-CCNL)**. The SUS-Chat-34B model has been
|
96 |
+
fine-tuned on millions of high-quality, multilingual instruction data.
|
97 |
+
While maintaining the strong language capabilities of the base model,
|
98 |
+
the SUS-Chat-34B model has improved the model’s response to human
|
99 |
instructions through high-quality instruction fine-tuning and excels at
|
100 |
imitating human thought processes through chains of thought. It
|
101 |
introduces inter-instruction attention sharing in long texts, expanding
|
|
|
147 |
|
148 |
<img
|
149 |
src="https://github.com/SUSTech-IDEA/SUS-Chat/raw/main/assets/radar.png"
|
150 |
+
id="fig-bench" alt="Figure 2: Benchmark" />
|
151 |
|
152 |
# Usage
|
153 |
|
|
|
179 |
|
180 |
messages = [{"role": "user", "content": "hi"}]
|
181 |
|
182 |
+
input_ids = tokenizer.encode(
|
183 |
+
chat_template(messages), return_tensors="pt", add_special_tokens=False
|
184 |
+
).to("cuda")
|
185 |
+
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
|
186 |
response = tokenizer.decode(
|
187 |
+
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
|
188 |
)
|
189 |
|
190 |
messages.append({"role": "assistant", "content": response})
|
|
|
193 |
|
194 |
messages.append({"role": "user", "content": "What is the capital of China?"})
|
195 |
|
196 |
+
input_ids = tokenizer.encode(
|
197 |
+
chat_template(messages), return_tensors="pt", add_special_tokens=False
|
198 |
+
).to("cuda")
|
199 |
+
output_ids = model.generate(input_ids.to("cuda"), max_length=256)
|
200 |
response = tokenizer.decode(
|
201 |
+
output_ids[0][input_ids.shape[1] :], skip_special_tokens=False
|
202 |
)
|
203 |
|
204 |
messages.append({"role": "assistant", "content": response})
|