--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: neunit-ks-ertong-chengren results: [] --- # neunit-ks-ertong-chengren This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0300 - Accuracy: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1364 | 0.99 | 55 | 0.0911 | 0.9835 | | 0.0459 | 2.0 | 111 | 0.0714 | 0.9848 | | 0.0285 | 2.99 | 166 | 0.0300 | 0.9949 | | 0.0216 | 4.0 | 222 | 0.0813 | 0.9683 | | 0.0147 | 4.95 | 275 | 0.0922 | 0.9632 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3