RichardErkhov
commited on
Commit
•
96113dd
1
Parent(s):
4a86a0d
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
karakuri-lm-7b-apm-v0.1 - GGUF
|
11 |
+
- Model creator: https://huggingface.co/karakuri-ai/
|
12 |
+
- Original model: https://huggingface.co/karakuri-ai/karakuri-lm-7b-apm-v0.1/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [karakuri-lm-7b-apm-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q2_K.gguf) | Q2_K | 3.24GB |
|
18 |
+
| [karakuri-lm-7b-apm-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.IQ3_XS.gguf) | IQ3_XS | 3.54GB |
|
19 |
+
| [karakuri-lm-7b-apm-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.IQ3_S.gguf) | IQ3_S | 3.71GB |
|
20 |
+
| [karakuri-lm-7b-apm-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q3_K_S.gguf) | Q3_K_S | 3.71GB |
|
21 |
+
| [karakuri-lm-7b-apm-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.IQ3_M.gguf) | IQ3_M | 3.82GB |
|
22 |
+
| [karakuri-lm-7b-apm-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q3_K.gguf) | Q3_K | 4.07GB |
|
23 |
+
| [karakuri-lm-7b-apm-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q3_K_M.gguf) | Q3_K_M | 4.07GB |
|
24 |
+
| [karakuri-lm-7b-apm-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q3_K_L.gguf) | Q3_K_L | 4.39GB |
|
25 |
+
| [karakuri-lm-7b-apm-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.IQ4_XS.gguf) | IQ4_XS | 4.48GB |
|
26 |
+
| [karakuri-lm-7b-apm-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q4_0.gguf) | Q4_0 | 4.67GB |
|
27 |
+
| [karakuri-lm-7b-apm-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.IQ4_NL.gguf) | IQ4_NL | 4.69GB |
|
28 |
+
| [karakuri-lm-7b-apm-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q4_K_S.gguf) | Q4_K_S | 4.7GB |
|
29 |
+
| [karakuri-lm-7b-apm-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q4_K.gguf) | Q4_K | 4.96GB |
|
30 |
+
| [karakuri-lm-7b-apm-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.96GB |
|
31 |
+
| [karakuri-lm-7b-apm-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q4_1.gguf) | Q4_1 | 5.12GB |
|
32 |
+
| [karakuri-lm-7b-apm-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q5_0.gguf) | Q5_0 | 5.57GB |
|
33 |
+
| [karakuri-lm-7b-apm-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q5_K_S.gguf) | Q5_K_S | 5.57GB |
|
34 |
+
| [karakuri-lm-7b-apm-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q5_K.gguf) | Q5_K | 5.72GB |
|
35 |
+
| [karakuri-lm-7b-apm-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q5_K_M.gguf) | Q5_K_M | 5.72GB |
|
36 |
+
| [karakuri-lm-7b-apm-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q5_1.gguf) | Q5_1 | 6.02GB |
|
37 |
+
| [karakuri-lm-7b-apm-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q6_K.gguf) | Q6_K | 6.53GB |
|
38 |
+
| [karakuri-lm-7b-apm-v0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/karakuri-ai_-_karakuri-lm-7b-apm-v0.1-gguf/blob/main/karakuri-lm-7b-apm-v0.1.Q8_0.gguf) | Q8_0 | 8.45GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
library_name: transformers
|
46 |
+
license: gemma
|
47 |
+
datasets:
|
48 |
+
- OpenAssistant/oasst2
|
49 |
+
- nvidia/HelpSteer
|
50 |
+
language:
|
51 |
+
- en
|
52 |
+
- ja
|
53 |
+
tags:
|
54 |
+
- gemma
|
55 |
+
- steerlm
|
56 |
+
base_model: google/gemma-7b
|
57 |
+
---
|
58 |
+
|
59 |
+
# KARAKURI LM 7B APM v0.1
|
60 |
+
|
61 |
+
## Model Details
|
62 |
+
|
63 |
+
### Model Description
|
64 |
+
|
65 |
+
- **Developed by:** [KARAKURI Inc.](https://about.karakuri.ai/)
|
66 |
+
- **Model type:** Causal decoder-only transformer language model
|
67 |
+
- **Languages**: Primarily English
|
68 |
+
- **License:** [Gemma Terms of Use](https://ai.google.dev/gemma/terms)
|
69 |
+
- **Finetuned from model:** [google/gemma-7b](https://huggingface.co/google/gemma-7b)
|
70 |
+
- **Contact**: For questions and comments about the model, please email `[email protected]`
|
71 |
+
|
72 |
+
## Usage
|
73 |
+
|
74 |
+
KARAKURI LM 7B APM v0.1 is a attribute prediction model that rates model responses on various aspects that makes a response desirable.
|
75 |
+
|
76 |
+
Given a conversation with multiple turns between user and assistant, the model rates the following attributes (between 0 and 4) for every assistant turn.
|
77 |
+
|
78 |
+
- helpfulness: Overall helpfulness of the response to the prompt.
|
79 |
+
- correctness: Inclusion of all pertinent facts without errors.
|
80 |
+
- coherence: Consistency and clarity of expression.
|
81 |
+
- complexity: Intellectual depth required to write response (i.e. whether the response can be written by anyone with basic language competency or requires deep domain expertise).
|
82 |
+
- verbosity: Amount of detail included in the response, relative to what is asked for in the prompt.
|
83 |
+
- quality: Perceived goodness of response.
|
84 |
+
- toxicity: Undesirable elements such as vulgar, harmful or potentially biased response.
|
85 |
+
- humor: Sense of humor within response.
|
86 |
+
- creativity: Willingness to generate non-conventional response.
|
87 |
+
|
88 |
+
The first five are derived from HelpSteer, while the remaining four are derived from OASST2.
|
89 |
+
|
90 |
+
You can run the model using the 🤗 Transformers:
|
91 |
+
|
92 |
+
```python
|
93 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
94 |
+
|
95 |
+
model_id = "karakuri-ai/karakuri-lm-7b-apm-v0.1"
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
97 |
+
model = AutoModelForCausalLM.from_pretrained(
|
98 |
+
model_id,
|
99 |
+
torch_dtype="auto",
|
100 |
+
device_map="auto",
|
101 |
+
)
|
102 |
+
|
103 |
+
messages = [
|
104 |
+
{"role": "user", "content": "Hello!"},
|
105 |
+
{"role": "assistant", "content": "Hello! How can I help you today?"},
|
106 |
+
]
|
107 |
+
tokenizer.apply_chat_template(
|
108 |
+
messages,
|
109 |
+
label="helpsteer",
|
110 |
+
tokenize=False,
|
111 |
+
add_generation_prompt=True,
|
112 |
+
)
|
113 |
+
# <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_1]
|
114 |
+
|
115 |
+
input_ids = tokenizer.apply_chat_template(
|
116 |
+
messages,
|
117 |
+
label="helpsteer",
|
118 |
+
add_generation_prompt=True,
|
119 |
+
return_tensors="pt",
|
120 |
+
).to(model.device)
|
121 |
+
outputs = model.generate(input_ids, max_new_tokens=32)
|
122 |
+
tokenizer.decode(outputs[0][input_ids.shape[-1]:])
|
123 |
+
# helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1 [/ATTR_1]<eos>
|
124 |
+
|
125 |
+
messages += [
|
126 |
+
{"role": "label", "content": "helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1"},
|
127 |
+
{"role": "user", "content": "Thank you!"},
|
128 |
+
{"role": "assistant", "content": "You're welcome! I'm happy to help however I can."},
|
129 |
+
]
|
130 |
+
tokenizer.apply_chat_template(
|
131 |
+
messages,
|
132 |
+
label="helpsteer",
|
133 |
+
tokenize=False,
|
134 |
+
add_generation_prompt=True,
|
135 |
+
)
|
136 |
+
# <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_1] helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1 [/ATTR_1]<eos>[INST] Thank you! [/INST] You're welcome! I'm happy to help however I can. [ATTR_1]
|
137 |
+
|
138 |
+
messages = [
|
139 |
+
{"role": "user", "content": "Hello!"},
|
140 |
+
{"role": "assistant", "content": "Hello! How can I help you today?"},
|
141 |
+
]
|
142 |
+
tokenizer.apply_chat_template(
|
143 |
+
messages,
|
144 |
+
label="oasst",
|
145 |
+
tokenize=False,
|
146 |
+
add_generation_prompt=True,
|
147 |
+
)
|
148 |
+
# <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_2]
|
149 |
+
|
150 |
+
input_ids = tokenizer.apply_chat_template(
|
151 |
+
messages,
|
152 |
+
label="oasst",
|
153 |
+
add_generation_prompt=True,
|
154 |
+
return_tensors="pt",
|
155 |
+
).to(model.device)
|
156 |
+
outputs = model.generate(input_ids, max_new_tokens=32)
|
157 |
+
tokenizer.decode(outputs[0][input_ids.shape[-1]:])
|
158 |
+
# quality: 3 toxicity: 1 humor: 1 creativity: 1 [/ATTR_2]<eos>
|
159 |
+
```
|
160 |
+
|
161 |
+
## Training Details
|
162 |
+
|
163 |
+
### Training Data
|
164 |
+
|
165 |
+
- [OASST2](https://huggingface.co/datasets/OpenAssistant/oasst2)
|
166 |
+
- [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer)
|
167 |
+
|
168 |
+
### Training Infrastructure
|
169 |
+
|
170 |
+
- **Hardware**: The model was trained on single node of an Amazon EC2 trn1.32xlarge instance.
|
171 |
+
- **Software**: We use code based on [neuronx-nemo-megatron](https://github.com/aws-neuron/neuronx-nemo-megatron).
|
172 |
+
|
173 |
+
## Citation
|
174 |
+
|
175 |
+
```
|
176 |
+
@misc{karakuri_lm_7b_apm_v01,
|
177 |
+
author = { {KARAKURI} {I}nc. },
|
178 |
+
title = { {KARAKURI} {LM} 7{B} {APM} v0.1 },
|
179 |
+
year = { 2024 },
|
180 |
+
url = { https://huggingface.co/karakuri-ai/karakuri-lm-7b-apm-v0.1 },
|
181 |
+
publisher = { Hugging Face },
|
182 |
+
journal = { Hugging Face repository }
|
183 |
+
}
|
184 |
+
```
|
185 |
+
|