RichardErkhov
commited on
Commit
•
e72e3e2
1
Parent(s):
9b70826
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Zenith-7B-dpo - GGUF
|
11 |
+
- Model creator: https://huggingface.co/Xenon1/
|
12 |
+
- Original model: https://huggingface.co/Xenon1/Zenith-7B-dpo/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Zenith-7B-dpo.Q2_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q2_K.gguf) | Q2_K | 2.53GB |
|
18 |
+
| [Zenith-7B-dpo.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
|
19 |
+
| [Zenith-7B-dpo.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ3_S.gguf) | IQ3_S | 2.96GB |
|
20 |
+
| [Zenith-7B-dpo.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
|
21 |
+
| [Zenith-7B-dpo.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ3_M.gguf) | IQ3_M | 3.06GB |
|
22 |
+
| [Zenith-7B-dpo.Q3_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K.gguf) | Q3_K | 3.28GB |
|
23 |
+
| [Zenith-7B-dpo.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
|
24 |
+
| [Zenith-7B-dpo.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
|
25 |
+
| [Zenith-7B-dpo.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
|
26 |
+
| [Zenith-7B-dpo.Q4_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_0.gguf) | Q4_0 | 3.83GB |
|
27 |
+
| [Zenith-7B-dpo.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
|
28 |
+
| [Zenith-7B-dpo.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
|
29 |
+
| [Zenith-7B-dpo.Q4_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_K.gguf) | Q4_K | 4.07GB |
|
30 |
+
| [Zenith-7B-dpo.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
|
31 |
+
| [Zenith-7B-dpo.Q4_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_1.gguf) | Q4_1 | 4.24GB |
|
32 |
+
| [Zenith-7B-dpo.Q5_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_0.gguf) | Q5_0 | 4.65GB |
|
33 |
+
| [Zenith-7B-dpo.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
|
34 |
+
| [Zenith-7B-dpo.Q5_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_K.gguf) | Q5_K | 4.78GB |
|
35 |
+
| [Zenith-7B-dpo.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
|
36 |
+
| [Zenith-7B-dpo.Q5_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_1.gguf) | Q5_1 | 5.07GB |
|
37 |
+
| [Zenith-7B-dpo.Q6_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q6_K.gguf) | Q6_K | 5.53GB |
|
38 |
+
| [Zenith-7B-dpo.Q8_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q8_0.gguf) | Q8_0 | 7.17GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
language:
|
46 |
+
- en
|
47 |
+
license: apache-2.0
|
48 |
+
tags:
|
49 |
+
- mistral
|
50 |
+
- Zenith-7B-dpo
|
51 |
+
pipeline_tag: text-generation
|
52 |
+
---
|
53 |
+
# Model Card for Zenith-7B-dpo
|
54 |
+
|
55 |
+
Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020).
|
56 |
+
|
57 |
+
|
58 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60394599033b61166496163b/x50p_gQtQMb0fFVY8MGeq.png)
|
59 |
+
|
60 |
+
## Instruction format
|
61 |
+
|
62 |
+
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
|
63 |
+
|
64 |
+
E.g.
|
65 |
+
```
|
66 |
+
text = "<s>[INST] What is your favourite condiment? [/INST]"
|
67 |
+
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
68 |
+
"[INST] Do you have mayonnaise recipes? [/INST]"
|
69 |
+
```
|
70 |
+
|
71 |
+
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
|
72 |
+
|
73 |
+
```python
|
74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
75 |
+
|
76 |
+
device = "cuda" # the device to load the model onto
|
77 |
+
|
78 |
+
model = AutoModelForCausalLM.from_pretrained("Xenon1/Zenith-7B-dpo")
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained("Xenon1/Zenith-7B-dpo")
|
80 |
+
|
81 |
+
messages = [
|
82 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
83 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
84 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
85 |
+
]
|
86 |
+
|
87 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
88 |
+
|
89 |
+
model_inputs = encodeds.to(device)
|
90 |
+
model.to(device)
|
91 |
+
|
92 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
93 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
94 |
+
print(decoded[0])
|
95 |
+
```
|
96 |
+
|
97 |
+
## Model Architecture
|
98 |
+
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
|
99 |
+
- Grouped-Query Attention
|
100 |
+
- Sliding-Window Attention
|
101 |
+
- Byte-fallback BPE tokenizer
|
102 |
+
|