RichardErkhov commited on
Commit
e72e3e2
1 Parent(s): 9b70826

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Zenith-7B-dpo - GGUF
11
+ - Model creator: https://huggingface.co/Xenon1/
12
+ - Original model: https://huggingface.co/Xenon1/Zenith-7B-dpo/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Zenith-7B-dpo.Q2_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q2_K.gguf) | Q2_K | 2.53GB |
18
+ | [Zenith-7B-dpo.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
19
+ | [Zenith-7B-dpo.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ3_S.gguf) | IQ3_S | 2.96GB |
20
+ | [Zenith-7B-dpo.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
21
+ | [Zenith-7B-dpo.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ3_M.gguf) | IQ3_M | 3.06GB |
22
+ | [Zenith-7B-dpo.Q3_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K.gguf) | Q3_K | 3.28GB |
23
+ | [Zenith-7B-dpo.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
24
+ | [Zenith-7B-dpo.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
25
+ | [Zenith-7B-dpo.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
26
+ | [Zenith-7B-dpo.Q4_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_0.gguf) | Q4_0 | 3.83GB |
27
+ | [Zenith-7B-dpo.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
28
+ | [Zenith-7B-dpo.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
29
+ | [Zenith-7B-dpo.Q4_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_K.gguf) | Q4_K | 4.07GB |
30
+ | [Zenith-7B-dpo.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
31
+ | [Zenith-7B-dpo.Q4_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q4_1.gguf) | Q4_1 | 4.24GB |
32
+ | [Zenith-7B-dpo.Q5_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_0.gguf) | Q5_0 | 4.65GB |
33
+ | [Zenith-7B-dpo.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
34
+ | [Zenith-7B-dpo.Q5_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_K.gguf) | Q5_K | 4.78GB |
35
+ | [Zenith-7B-dpo.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
36
+ | [Zenith-7B-dpo.Q5_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q5_1.gguf) | Q5_1 | 5.07GB |
37
+ | [Zenith-7B-dpo.Q6_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q6_K.gguf) | Q6_K | 5.53GB |
38
+ | [Zenith-7B-dpo.Q8_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-gguf/blob/main/Zenith-7B-dpo.Q8_0.gguf) | Q8_0 | 7.17GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ license: apache-2.0
48
+ tags:
49
+ - mistral
50
+ - Zenith-7B-dpo
51
+ pipeline_tag: text-generation
52
+ ---
53
+ # Model Card for Zenith-7B-dpo
54
+
55
+ Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020).
56
+
57
+
58
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60394599033b61166496163b/x50p_gQtQMb0fFVY8MGeq.png)
59
+
60
+ ## Instruction format
61
+
62
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
63
+
64
+ E.g.
65
+ ```
66
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
67
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
68
+ "[INST] Do you have mayonnaise recipes? [/INST]"
69
+ ```
70
+
71
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
72
+
73
+ ```python
74
+ from transformers import AutoModelForCausalLM, AutoTokenizer
75
+
76
+ device = "cuda" # the device to load the model onto
77
+
78
+ model = AutoModelForCausalLM.from_pretrained("Xenon1/Zenith-7B-dpo")
79
+ tokenizer = AutoTokenizer.from_pretrained("Xenon1/Zenith-7B-dpo")
80
+
81
+ messages = [
82
+ {"role": "user", "content": "What is your favourite condiment?"},
83
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
84
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
85
+ ]
86
+
87
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
88
+
89
+ model_inputs = encodeds.to(device)
90
+ model.to(device)
91
+
92
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
93
+ decoded = tokenizer.batch_decode(generated_ids)
94
+ print(decoded[0])
95
+ ```
96
+
97
+ ## Model Architecture
98
+ This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
99
+ - Grouped-Query Attention
100
+ - Sliding-Window Attention
101
+ - Byte-fallback BPE tokenizer
102
+