RichardErkhov
commited on
Commit
•
ec6ab4d
1
Parent(s):
7401922
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
CursorCore-DS-1.3B - GGUF
|
11 |
+
- Model creator: https://huggingface.co/TechxGenus/
|
12 |
+
- Original model: https://huggingface.co/TechxGenus/CursorCore-DS-1.3B/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [CursorCore-DS-1.3B.Q2_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q2_K.gguf) | Q2_K | 0.52GB |
|
18 |
+
| [CursorCore-DS-1.3B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.IQ3_XS.gguf) | IQ3_XS | 0.57GB |
|
19 |
+
| [CursorCore-DS-1.3B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.IQ3_S.gguf) | IQ3_S | 0.6GB |
|
20 |
+
| [CursorCore-DS-1.3B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q3_K_S.gguf) | Q3_K_S | 0.6GB |
|
21 |
+
| [CursorCore-DS-1.3B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.IQ3_M.gguf) | IQ3_M | 0.63GB |
|
22 |
+
| [CursorCore-DS-1.3B.Q3_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q3_K.gguf) | Q3_K | 0.66GB |
|
23 |
+
| [CursorCore-DS-1.3B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q3_K_M.gguf) | Q3_K_M | 0.66GB |
|
24 |
+
| [CursorCore-DS-1.3B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q3_K_L.gguf) | Q3_K_L | 0.69GB |
|
25 |
+
| [CursorCore-DS-1.3B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.IQ4_XS.gguf) | IQ4_XS | 0.7GB |
|
26 |
+
| [CursorCore-DS-1.3B.Q4_0.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q4_0.gguf) | Q4_0 | 0.72GB |
|
27 |
+
| [CursorCore-DS-1.3B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.IQ4_NL.gguf) | IQ4_NL | 0.73GB |
|
28 |
+
| [CursorCore-DS-1.3B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q4_K_S.gguf) | Q4_K_S | 0.76GB |
|
29 |
+
| [CursorCore-DS-1.3B.Q4_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q4_K.gguf) | Q4_K | 0.81GB |
|
30 |
+
| [CursorCore-DS-1.3B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q4_K_M.gguf) | Q4_K_M | 0.81GB |
|
31 |
+
| [CursorCore-DS-1.3B.Q4_1.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q4_1.gguf) | Q4_1 | 0.8GB |
|
32 |
+
| [CursorCore-DS-1.3B.Q5_0.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q5_0.gguf) | Q5_0 | 0.87GB |
|
33 |
+
| [CursorCore-DS-1.3B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q5_K_S.gguf) | Q5_K_S | 0.89GB |
|
34 |
+
| [CursorCore-DS-1.3B.Q5_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q5_K.gguf) | Q5_K | 0.93GB |
|
35 |
+
| [CursorCore-DS-1.3B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q5_K_M.gguf) | Q5_K_M | 0.93GB |
|
36 |
+
| [CursorCore-DS-1.3B.Q5_1.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q5_1.gguf) | Q5_1 | 0.95GB |
|
37 |
+
| [CursorCore-DS-1.3B.Q6_K.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q6_K.gguf) | Q6_K | 1.09GB |
|
38 |
+
| [CursorCore-DS-1.3B.Q8_0.gguf](https://huggingface.co/RichardErkhov/TechxGenus_-_CursorCore-DS-1.3B-gguf/blob/main/CursorCore-DS-1.3B.Q8_0.gguf) | Q8_0 | 1.33GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
tags:
|
46 |
+
- code
|
47 |
+
base_model:
|
48 |
+
- deepseek-ai/deepseek-coder-1.3b-base
|
49 |
+
library_name: transformers
|
50 |
+
pipeline_tag: text-generation
|
51 |
+
license: other
|
52 |
+
license_name: deepseek
|
53 |
+
license_link: LICENSE
|
54 |
+
---
|
55 |
+
|
56 |
+
# CursorCore: Assist Programming through Aligning Anything
|
57 |
+
|
58 |
+
<p align="center">
|
59 |
+
<a href="http://arxiv.org/abs/2410.07002">[📄arXiv]</a> |
|
60 |
+
<a href="https://hf.co/papers/2410.07002">[🤗HF Paper]</a> |
|
61 |
+
<a href="https://huggingface.co/collections/TechxGenus/cursorcore-series-6706618c38598468866b60e2">[🤖Models]</a> |
|
62 |
+
<a href="https://github.com/TechxGenus/CursorCore">[🛠️Code]</a> |
|
63 |
+
<a href="https://github.com/TechxGenus/CursorWeb">[Web]</a> |
|
64 |
+
<a href="https://discord.gg/Z5Tev8fV">[Discord]</a>
|
65 |
+
</p>
|
66 |
+
|
67 |
+
<hr>
|
68 |
+
|
69 |
+
- [CursorCore: Assist Programming through Aligning Anything](#cursorcore-assist-programming-through-aligning-anything)
|
70 |
+
- [Introduction](#introduction)
|
71 |
+
- [Models](#models)
|
72 |
+
- [Usage](#usage)
|
73 |
+
- [1) Normal chat](#1-normal-chat)
|
74 |
+
- [2) Assistant-Conversation](#2-assistant-conversation)
|
75 |
+
- [3) Web Demo](#3-web-demo)
|
76 |
+
- [Future Work](#future-work)
|
77 |
+
- [Citation](#citation)
|
78 |
+
- [Contribution](#contribution)
|
79 |
+
|
80 |
+
<hr>
|
81 |
+
|
82 |
+
## Introduction
|
83 |
+
|
84 |
+
CursorCore is a series of open-source models designed for AI-assisted programming. It aims to support features such as automated editing and inline chat, replicating the core abilities of closed-source AI-assisted programming tools like Cursor. This is achieved by aligning data generated through Programming-Instruct. Please read [our paper](http://arxiv.org/abs/2410.07002) to learn more.
|
85 |
+
|
86 |
+
<p align="center">
|
87 |
+
<img width="100%" alt="conversation" src="https://raw.githubusercontent.com/TechxGenus/CursorCore/main/pictures/conversation.png">
|
88 |
+
</p>
|
89 |
+
|
90 |
+
![CursorWeb](https://raw.githubusercontent.com/TechxGenus/CursorCore/main/pictures/CursorWeb.gif)
|
91 |
+
|
92 |
+
## Models
|
93 |
+
|
94 |
+
Our models have been open-sourced on Hugging Face. You can access our models here: [CursorCore-Series](https://huggingface.co/collections/TechxGenus/cursorcore-series-6706618c38598468866b60e2"). We also provide pre-quantized weights for GPTQ and AWQ here: [CursorCore-Quantization](https://huggingface.co/collections/TechxGenus/cursorcore-quantization-67066431f29f252494ee8cf3)
|
95 |
+
|
96 |
+
## Usage
|
97 |
+
|
98 |
+
Here are some examples of how to use our model:
|
99 |
+
|
100 |
+
### 1) Normal chat
|
101 |
+
|
102 |
+
Script:
|
103 |
+
|
104 |
+
````python
|
105 |
+
import torch
|
106 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
107 |
+
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B")
|
109 |
+
model = AutoModelForCausalLM.from_pretrained(
|
110 |
+
"TechxGenus/CursorCore-Yi-9B",
|
111 |
+
torch_dtype=torch.bfloat16,
|
112 |
+
device_map="auto"
|
113 |
+
)
|
114 |
+
|
115 |
+
messages = [
|
116 |
+
{"role": "user", "content": "Hi!"},
|
117 |
+
]
|
118 |
+
prompt = tokenizer.apply_chat_template(
|
119 |
+
messages,
|
120 |
+
tokenize=False,
|
121 |
+
add_generation_prompt=True
|
122 |
+
)
|
123 |
+
|
124 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
125 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512)
|
126 |
+
print(tokenizer.decode(outputs[0]))
|
127 |
+
````
|
128 |
+
|
129 |
+
Output:
|
130 |
+
|
131 |
+
````txt
|
132 |
+
<|im_start|>system
|
133 |
+
You are a helpful programming assistant.<|im_end|>
|
134 |
+
<|im_start|>user
|
135 |
+
Hi!<|im_end|>
|
136 |
+
<|im_start|>assistant
|
137 |
+
Hello! I'm an AI language model and I can help you with any programming questions you might have. What specific problem or task are you trying to solve?<|im_end|>
|
138 |
+
````
|
139 |
+
|
140 |
+
### 2) Assistant-Conversation
|
141 |
+
|
142 |
+
In our work, we introduce a new framework of AI-assisted programming task. It is designed for aligning anything during programming process, used for the implementation of features like Tab and Inline Chat.
|
143 |
+
|
144 |
+
Script 1:
|
145 |
+
|
146 |
+
````python
|
147 |
+
import torch
|
148 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
149 |
+
from eval.utils import prepare_input_for_wf
|
150 |
+
|
151 |
+
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B")
|
152 |
+
model = AutoModelForCausalLM.from_pretrained(
|
153 |
+
"TechxGenus/CursorCore-Yi-9B",
|
154 |
+
torch_dtype=torch.bfloat16,
|
155 |
+
device_map="auto"
|
156 |
+
)
|
157 |
+
sample = {
|
158 |
+
"history": [
|
159 |
+
{
|
160 |
+
"type": "code",
|
161 |
+
"lang": "python",
|
162 |
+
"code": """def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"current": {
|
166 |
+
"type": "code",
|
167 |
+
"lang": "python",
|
168 |
+
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
|
169 |
+
},
|
170 |
+
"user": ""
|
171 |
+
}
|
172 |
+
|
173 |
+
prompt = tokenizer.apply_chat_template(
|
174 |
+
prepare_input_for_wf(sample),
|
175 |
+
tokenize=False,
|
176 |
+
chat_template="assistant-conversation",
|
177 |
+
add_generation_prompt=True
|
178 |
+
)
|
179 |
+
|
180 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
181 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
|
182 |
+
print(tokenizer.decode(outputs[0]))
|
183 |
+
````
|
184 |
+
|
185 |
+
Output 1:
|
186 |
+
|
187 |
+
````txt
|
188 |
+
<|im_start|>system
|
189 |
+
You are a helpful programming assistant.<|im_end|>
|
190 |
+
<|im_start|>history
|
191 |
+
```python
|
192 |
+
def quick_sort(arr):
|
193 |
+
if len(arr) <= 1:
|
194 |
+
return arr
|
195 |
+
pivot = arr[len(arr) // 2]
|
196 |
+
left = [x for x in arr if x < pivot]
|
197 |
+
middle = [x for x in arr if x == pivot]
|
198 |
+
right = [x for x in arr if x > pivot]
|
199 |
+
return quick_sort(left) + middle + quick_sort(right)
|
200 |
+
```<|im_end|>
|
201 |
+
<|im_start|>current
|
202 |
+
```python
|
203 |
+
def quick_sort(array):
|
204 |
+
if len(arr) <= 1:
|
205 |
+
return arr
|
206 |
+
pivot = arr[len(arr) // 2]
|
207 |
+
left = [x for x in arr if x < pivot]
|
208 |
+
middle = [x for x in arr if x == pivot]
|
209 |
+
right = [x for x in arr if x > pivot]
|
210 |
+
return quick_sort(left) + middle + quick_sort(right)
|
211 |
+
```<|im_end|>
|
212 |
+
<|im_start|>assistant
|
213 |
+
<|next_start|>```python
|
214 |
+
def quick_sort(array):
|
215 |
+
if len(array) <= 1:
|
216 |
+
return array
|
217 |
+
pivot = array[len(array) // 2]
|
218 |
+
left = [x for x in array if x < pivot]
|
219 |
+
middle = [x for x in array if x == pivot]
|
220 |
+
right = [x for x in array if x > pivot]
|
221 |
+
return quick_sort(left) + middle + quick_sort(right)
|
222 |
+
```<|next_end|>
|
223 |
+
The user has provided a revised code change that corrects the parameter name from `arr` to `array` in the `quick_sort` function. This change ensures consistency in the function definition and avoids potential confusion or errors.
|
224 |
+
|
225 |
+
To implement this, we will:
|
226 |
+
1. Update the parameter name in the function definition from `arr` to `array`.
|
227 |
+
2. Ensure that all references to `arr` within the function are updated to `array`.
|
228 |
+
|
229 |
+
This will make the function definition and internal references consistent, improving code readability and maintainability.<|im_end|>
|
230 |
+
````
|
231 |
+
|
232 |
+
Script 2:
|
233 |
+
|
234 |
+
````python
|
235 |
+
import torch
|
236 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
237 |
+
from eval.utils import prepare_input_for_wf
|
238 |
+
|
239 |
+
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B")
|
240 |
+
model = AutoModelForCausalLM.from_pretrained(
|
241 |
+
"TechxGenus/CursorCore-Yi-9B",
|
242 |
+
torch_dtype=torch.bfloat16,
|
243 |
+
device_map="auto"
|
244 |
+
)
|
245 |
+
sample = {
|
246 |
+
"history": [],
|
247 |
+
"current": {
|
248 |
+
"type": "code",
|
249 |
+
"lang": "python",
|
250 |
+
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
|
251 |
+
},
|
252 |
+
"user": "Add Docstring."
|
253 |
+
}
|
254 |
+
|
255 |
+
prompt = tokenizer.apply_chat_template(
|
256 |
+
prepare_input_for_wf(sample),
|
257 |
+
tokenize=False,
|
258 |
+
chat_template="assistant-conversation",
|
259 |
+
add_generation_prompt=True
|
260 |
+
)
|
261 |
+
|
262 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
263 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
|
264 |
+
print(tokenizer.decode(outputs[0]))
|
265 |
+
````
|
266 |
+
|
267 |
+
Output 2:
|
268 |
+
|
269 |
+
````txt
|
270 |
+
<|im_start|>system
|
271 |
+
You are a helpful programming assistant.<|im_end|>
|
272 |
+
<|im_start|>current
|
273 |
+
```python
|
274 |
+
def quick_sort(array):
|
275 |
+
if len(arr) <= 1:
|
276 |
+
return arr
|
277 |
+
pivot = arr[len(arr) // 2]
|
278 |
+
left = [x for x in arr if x < pivot]
|
279 |
+
middle = [x for x in arr if x == pivot]
|
280 |
+
right = [x for x in arr if x > pivot]
|
281 |
+
return quick_sort(left) + middle + quick_sort(right)
|
282 |
+
```<|im_end|>
|
283 |
+
<|im_start|>user
|
284 |
+
Add Docstring.<|im_end|>
|
285 |
+
<|im_start|>assistant
|
286 |
+
<|next_start|>```python
|
287 |
+
def quick_sort(array):
|
288 |
+
"""
|
289 |
+
This is an implementation of the quick sort algorithm.
|
290 |
+
"""
|
291 |
+
if len(arr) <= 1:
|
292 |
+
return arr
|
293 |
+
pivot = arr[len(arr) // 2]
|
294 |
+
left = [x for x in arr if x < pivot]
|
295 |
+
middle = [x for x in arr if x == pivot]
|
296 |
+
right = [x for x in arr if x > pivot]
|
297 |
+
return quick_sort(left) + middle + quick_sort(right)
|
298 |
+
```<|next_end|><|im_end|>
|
299 |
+
````
|
300 |
+
|
301 |
+
For models in Locate-and-Change (LC) and Search-and-Replace (SR) formats, the output examples are as follows:
|
302 |
+
|
303 |
+
Script for LC:
|
304 |
+
|
305 |
+
````python
|
306 |
+
import torch
|
307 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
308 |
+
from eval.utils import prepare_input_for_lc
|
309 |
+
|
310 |
+
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-LC")
|
311 |
+
model = AutoModelForCausalLM.from_pretrained(
|
312 |
+
"TechxGenus/CursorCore-Yi-1.5B-LC",
|
313 |
+
torch_dtype=torch.bfloat16,
|
314 |
+
device_map="auto"
|
315 |
+
)
|
316 |
+
sample = {
|
317 |
+
"history": [],
|
318 |
+
"current": {
|
319 |
+
"type": "code",
|
320 |
+
"lang": "python",
|
321 |
+
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
|
322 |
+
},
|
323 |
+
"user": "Add Docstring."
|
324 |
+
}
|
325 |
+
|
326 |
+
prompt = tokenizer.apply_chat_template(
|
327 |
+
prepare_input_for_lc(sample),
|
328 |
+
tokenize=False,
|
329 |
+
chat_template="assistant-conversation",
|
330 |
+
add_generation_prompt=True
|
331 |
+
)
|
332 |
+
|
333 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
334 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
|
335 |
+
print(tokenizer.decode(outputs[0]))
|
336 |
+
````
|
337 |
+
|
338 |
+
Output for LC:
|
339 |
+
|
340 |
+
````txt
|
341 |
+
<|im_start|>system
|
342 |
+
You are a helpful programming assistant.<|im_end|>
|
343 |
+
<|im_start|>current
|
344 |
+
```python
|
345 |
+
1 def quick_sort(array):
|
346 |
+
2 if len(arr) <= 1:
|
347 |
+
3 return arr
|
348 |
+
4 pivot = arr[len(arr) // 2]
|
349 |
+
5 left = [x for x in arr if x < pivot]
|
350 |
+
6 middle = [x for x in arr if x == pivot]
|
351 |
+
7 right = [x for x in arr if x > pivot]
|
352 |
+
8 return quick_sort(left) + middle + quick_sort(right)
|
353 |
+
```<|im_end|>
|
354 |
+
<|im_start|>user
|
355 |
+
Add Docstring.<|im_end|>
|
356 |
+
<|im_start|>assistant
|
357 |
+
<|next_start|>1,1
|
358 |
+
```
|
359 |
+
'''This function will sort an array using quick sort algorithm'''
|
360 |
+
```<|next_end|>
|
361 |
+
To enhance the readability and maintainability of the code, we should add a docstring to the `quick_sort` function. A docstring provides a clear description of what the function does, which is particularly useful for other developers who might use or modify this code in the future.
|
362 |
+
|
363 |
+
The docstring will be added immediately after the function definition, explaining that the function uses the quick sort algorithm to sort an array. This will make the code more self-explanatory and easier to understand.
|
364 |
+
|
365 |
+
Here's the plan:
|
366 |
+
1. Add a docstring at the beginning of the `quick_sort` function.
|
367 |
+
2. Ensure the docstring is clear and concise, describing the purpose of the function.
|
368 |
+
|
369 |
+
This modification will improve the code's documentation without altering its functionality.<|im_end|>
|
370 |
+
````
|
371 |
+
|
372 |
+
Script for SR:
|
373 |
+
|
374 |
+
````python
|
375 |
+
import torch
|
376 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
377 |
+
from eval.utils import prepare_input_for_sr
|
378 |
+
|
379 |
+
tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-SR")
|
380 |
+
model = AutoModelForCausalLM.from_pretrained(
|
381 |
+
"TechxGenus/CursorCore-Yi-1.5B-SR",
|
382 |
+
torch_dtype=torch.bfloat16,
|
383 |
+
device_map="auto"
|
384 |
+
)
|
385 |
+
sample = {
|
386 |
+
"history": [],
|
387 |
+
"current": {
|
388 |
+
"type": "code",
|
389 |
+
"lang": "python",
|
390 |
+
"code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
|
391 |
+
},
|
392 |
+
"user": "Add Docstring."
|
393 |
+
}
|
394 |
+
|
395 |
+
prompt = tokenizer.apply_chat_template(
|
396 |
+
prepare_input_for_sr(sample),
|
397 |
+
tokenize=False,
|
398 |
+
chat_template="assistant-conversation",
|
399 |
+
add_generation_prompt=True
|
400 |
+
)
|
401 |
+
|
402 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
403 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
|
404 |
+
print(tokenizer.decode(outputs[0]))
|
405 |
+
````
|
406 |
+
|
407 |
+
Output for SR:
|
408 |
+
|
409 |
+
````txt
|
410 |
+
<|im_start|>system
|
411 |
+
You are a helpful programming assistant.<|im_end|>
|
412 |
+
<|im_start|>current
|
413 |
+
```python
|
414 |
+
def quick_sort(array):
|
415 |
+
if len(arr) <= 1:
|
416 |
+
return arr
|
417 |
+
pivot = arr[len(arr) // 2]
|
418 |
+
left = [x for x in arr if x < pivot]
|
419 |
+
middle = [x for x in arr if x == pivot]
|
420 |
+
right = [x for x in arr if x > pivot]
|
421 |
+
return quick_sort(left) + middle + quick_sort(right)
|
422 |
+
```<|im_end|>
|
423 |
+
<|im_start|>user
|
424 |
+
Add Docstring.<|im_end|>
|
425 |
+
<|im_start|>assistant
|
426 |
+
<|next_start|>```python
|
427 |
+
def quick_sort(array):
|
428 |
+
<|search_and_replace|>
|
429 |
+
def quick_sort(array):
|
430 |
+
"""
|
431 |
+
This function implements quick sort algorithm
|
432 |
+
"""
|
433 |
+
```<|next_end|><|im_end|>
|
434 |
+
````
|
435 |
+
|
436 |
+
### 3) Web Demo
|
437 |
+
|
438 |
+
We create a web demo for CursorCore. Please visit [CursorWeb](https://github.com/TechxGenus/CursorWeb) for more details.
|
439 |
+
|
440 |
+
## Future Work
|
441 |
+
|
442 |
+
CursorCore is still in a very early stage, and lots of work is needed to achieve a better user experience. For example:
|
443 |
+
|
444 |
+
- Repository-level editing support
|
445 |
+
- Better and faster editing formats
|
446 |
+
- Better user interface and presentation
|
447 |
+
- ...
|
448 |
+
|
449 |
+
## Citation
|
450 |
+
|
451 |
+
```bibtex
|
452 |
+
@article{jiang2024cursorcore,
|
453 |
+
title = {CursorCore: Assist Programming through Aligning Anything},
|
454 |
+
author = {Hao Jiang and Qi Liu and Rui Li and Shengyu Ye and Shijin Wang},
|
455 |
+
year = {2024},
|
456 |
+
journal = {arXiv preprint arXiv: 2410.07002}
|
457 |
+
}
|
458 |
+
```
|
459 |
+
|
460 |
+
## Contribution
|
461 |
+
|
462 |
+
Contributions are welcome! If you find any bugs or have suggestions for improvements, please open an issue or submit a pull request.
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more quants, at much higher speed, than I would otherwise be able to.
|