File size: 18,586 Bytes
a7808b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


llama-3-Korean-Bllossom-8B - GGUF
- Model creator: https://huggingface.co/MLP-KTLim/
- Original model: https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [llama-3-Korean-Bllossom-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q2_K.gguf) | Q2_K | 2.96GB |
| [llama-3-Korean-Bllossom-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
| [llama-3-Korean-Bllossom-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.IQ3_S.gguf) | IQ3_S | 3.43GB |
| [llama-3-Korean-Bllossom-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
| [llama-3-Korean-Bllossom-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.IQ3_M.gguf) | IQ3_M | 3.52GB |
| [llama-3-Korean-Bllossom-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q3_K.gguf) | Q3_K | 3.74GB |
| [llama-3-Korean-Bllossom-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
| [llama-3-Korean-Bllossom-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
| [llama-3-Korean-Bllossom-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
| [llama-3-Korean-Bllossom-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q4_0.gguf) | Q4_0 | 4.34GB |
| [llama-3-Korean-Bllossom-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
| [llama-3-Korean-Bllossom-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
| [llama-3-Korean-Bllossom-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q4_K.gguf) | Q4_K | 4.58GB |
| [llama-3-Korean-Bllossom-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
| [llama-3-Korean-Bllossom-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q4_1.gguf) | Q4_1 | 4.78GB |
| [llama-3-Korean-Bllossom-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q5_0.gguf) | Q5_0 | 5.21GB |
| [llama-3-Korean-Bllossom-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
| [llama-3-Korean-Bllossom-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q5_K.gguf) | Q5_K | 5.34GB |
| [llama-3-Korean-Bllossom-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
| [llama-3-Korean-Bllossom-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q5_1.gguf) | Q5_1 | 5.65GB |
| [llama-3-Korean-Bllossom-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q6_K.gguf) | Q6_K | 6.14GB |
| [llama-3-Korean-Bllossom-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/MLP-KTLim_-_llama-3-Korean-Bllossom-8B-gguf/blob/main/llama-3-Korean-Bllossom-8B.Q8_0.gguf) | Q8_0 | 7.95GB |




Original model description:
---
base_model:
- meta-llama/Meta-Llama-3-8B
language:
- en
- ko
library_name: transformers
license: llama3
---

<a href="https://github.com/MLP-Lab/Bllossom">
  <img src="https://github.com/teddysum/bllossom/blob/main//bllossom_icon.png?raw=true" width="40%" height="50%">
</a>



# Update!
* ~~[2024.08.09] Llama3.1 버전을 κΈ°λ°˜μœΌλ‘œν•œ Bllossom-8B둜 λͺ¨λΈμ„ μ—…λ°μ΄νŠΈ ν–ˆμŠ΅λ‹ˆλ‹€. κΈ°μ‘΄ llama3기반 Bllossom 보닀 평균 5%정도 μ„±λŠ₯ ν–₯상이 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.~~(μˆ˜μ •μ€‘μ— μžˆμŠ΅λ‹ˆλ‹€.)
* [2024.06.18] μ‚¬μ „ν•™μŠ΅λŸ‰μ„ **250GB**κΉŒμ§€ 늘린 Bllossom ELOλͺ¨λΈλ‘œ μ—…λ°μ΄νŠΈ λ˜μ—ˆμŠ΅λ‹ˆλ‹€. λ‹€λ§Œ 단어확μž₯은 ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. κΈ°μ‘΄ 단어확μž₯된 long-context λͺ¨λΈμ„ ν™œμš©ν•˜κ³  μ‹ΆμœΌμ‹ λΆ„μ€ κ°œμΈμ—°λ½μ£Όμ„Έμš”!
* [2024.06.18] Bllossom ELO λͺ¨λΈμ€ 자체 κ°œλ°œν•œ ELOμ‚¬μ „ν•™μŠ΅ 기반으둜 μƒˆλ‘œμš΄ ν•™μŠ΅λœ λͺ¨λΈμž…λ‹ˆλ‹€. [LogicKor](https://github.com/StableFluffy/LogicKor) 벀치마크 κ²°κ³Ό ν˜„μ‘΄ν•˜λŠ” ν•œκ΅­μ–΄ 10Bμ΄ν•˜ λͺ¨λΈμ€‘ SOTA점수λ₯Ό λ°›μ•˜μŠ΅λ‹ˆλ‹€. 

LogicKor μ„±λŠ₯ν‘œ :
| Model | Math | Reasoning | Writing | Coding | Understanding | Grammar | Single ALL | Multi ALL | Overall |
|:---------:|:-----:|:------:|:-----:|:-----:|:----:|:-----:|:-----:|:-----:|:----:|
| gpt-3.5-turbo-0125 | 7.14 | 7.71 | 8.28 | 5.85 | 9.71 | 6.28 | 7.50 | 7.95 | 7.72 |
| gemini-1.5-pro-preview-0215 | 8.00 | 7.85 | 8.14 | 7.71 | 8.42 | 7.28 | 7.90 | 6.26 | 7.08 |
| llama-3-Korean-Bllossom-8B | 5.43 | 8.29 | 9.0 | 4.43 | 7.57 | 6.86 | 6.93 | 6.93 | 6.93 |



# Bllossom | [Demo]() | [Homepage](https://www.bllossom.ai/) | [Github](https://github.com/MLP-Lab/Bllossom) |

<!-- [GPU용 Colab μ½”λ“œμ˜ˆμ œ](https://colab.research.google.com/drive/1fBOzUVZ6NRKk_ugeoTbAOokWKqSN47IG?usp=sharing) | -->
<!-- [CPU용 Colab μ–‘μžν™”λͺ¨λΈ μ½”λ“œμ˜ˆμ œ](https://colab.research.google.com/drive/129ZNVg5R2NPghUEFHKF0BRdxsZxinQcJ?usp=drive_link) -->

```bash
저희 BllossomνŒ€ μ—μ„œ ν•œκ΅­μ–΄-μ˜μ–΄ 이쀑 μ–Έμ–΄λͺ¨λΈμΈ Bllossom을 κ³΅κ°œν–ˆμŠ΅λ‹ˆλ‹€!
μ„œμšΈκ³ΌκΈ°λŒ€ μŠˆνΌμ»΄ν“¨νŒ… μ„Όν„°μ˜ μ§€μ›μœΌλ‘œ 100GBκ°€λ„˜λŠ” ν•œκ΅­μ–΄λ‘œ λͺ¨λΈμ „체λ₯Ό ν’€νŠœλ‹ν•œ ν•œκ΅­μ–΄ κ°•ν™” 이쀑언어 λͺ¨λΈμž…λ‹ˆλ‹€!
ν•œκ΅­μ–΄ μž˜ν•˜λŠ” λͺ¨λΈ μ°Ύκ³  μžˆμ§€ μ•ŠμœΌμ…¨λ‚˜μš”?
 - ν•œκ΅­μ–΄ 졜초! 무렀 3λ§Œκ°œκ°€ λ„˜λŠ” ν•œκ΅­μ–΄ μ–΄νœ˜ν™•μž₯
 - Llama3λŒ€λΉ„ λŒ€λž΅ 25% 더 κΈ΄ 길이의 ν•œκ΅­μ–΄ Context μ²˜λ¦¬κ°€λŠ₯
 - ν•œκ΅­μ–΄-μ˜μ–΄ Pararell Corpusλ₯Ό ν™œμš©ν•œ ν•œκ΅­μ–΄-μ˜μ–΄ 지식연결 (μ‚¬μ „ν•™μŠ΅)
 - ν•œκ΅­μ–΄ λ¬Έν™”, μ–Έμ–΄λ₯Ό κ³ λ €ν•΄ μ–Έμ–΄ν•™μžκ°€ μ œμž‘ν•œ 데이터λ₯Ό ν™œμš©ν•œ λ―Έμ„Έμ‘°μ •
 - κ°•ν™”ν•™μŠ΅
이 λͺ¨λ“ κ²Œ ν•œκΊΌλ²ˆμ— 적용되고 상업적 이용이 κ°€λŠ₯ν•œ Bllossom을 μ΄μš©ν•΄ μ—¬λŸ¬λΆ„ 만의 λͺ¨λΈμ„ λ§Œλ“€μ–΄λ³΄μ„Έμš₯!
무렀 Colab 무료 GPU둜 ν•™μŠ΅μ΄ κ°€λŠ₯ν•©λ‹ˆλ‹€. ν˜Ήμ€ μ–‘μžν™” λͺ¨λΈλ‘œ CPUμ—μ˜¬λ €λ³΄μ„Έμš” [μ–‘μžν™”λͺ¨λΈ](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B-4bit)

1. Bllossom-8BλŠ” μ„œμšΈκ³ΌκΈ°λŒ€, ν…Œλ””μΈ, μ—°μ„ΈλŒ€ μ–Έμ–΄μžμ› μ—°κ΅¬μ‹€μ˜ μ–Έμ–΄ν•™μžμ™€ ν˜‘μ—…ν•΄ λ§Œλ“  μ‹€μš©μ£Όμ˜κΈ°λ°˜ μ–Έμ–΄λͺ¨λΈμž…λ‹ˆλ‹€! μ•žμœΌλ‘œ 지속적인 μ—…λ°μ΄νŠΈλ₯Ό 톡해 κ΄€λ¦¬ν•˜κ² μŠ΅λ‹ˆλ‹€ 많이 ν™œμš©ν•΄μ£Όμ„Έμš” πŸ™‚
2. 초 κ°•λ ₯ν•œ Advanced-Bllossom 8B, 70Bλͺ¨λΈ, μ‹œκ°-μ–Έμ–΄λͺ¨λΈμ„ λ³΄μœ ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€! (κΆκΈˆν•˜μ‹ λΆ„μ€ κ°œλ³„ μ—°λ½μ£Όμ„Έμš”!!)
3. Bllossom은 NAACL2024, LREC-COLING2024 (ꡬ두) λ°œν‘œλ‘œ μ±„νƒλ˜μ—ˆμŠ΅λ‹ˆλ‹€.
4. 쒋은 μ–Έμ–΄λͺ¨λΈ 계속 μ—…λ°μ΄νŠΈ ν•˜κ² μŠ΅λ‹ˆλ‹€!! ν•œκ΅­μ–΄ κ°•ν™”λ₯Όμœ„ν•΄ 곡동 μ—°κ΅¬ν•˜μ‹€λΆ„(νŠΉνžˆλ…Όλ¬Έ) μ–Έμ œλ“  ν™˜μ˜ν•©λ‹ˆλ‹€!! 
   특히 μ†ŒλŸ‰μ˜ GPU라도 λŒ€μ—¬ κ°€λŠ₯ν•œνŒ€μ€ μ–Έμ œλ“  μ—°λ½μ£Όμ„Έμš”! λ§Œλ“€κ³  싢은거 λ„μ™€λ“œλ €μš”.
```

The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3. It enhances the connection of knowledge between Korean and English. It has the following features:

* **Knowledge Linking**: Linking Korean and English knowledge through additional training
* **Vocabulary Expansion**: Expansion of Korean vocabulary to enhance Korean expressiveness.
* **Instruction Tuning**: Tuning using custom-made instruction following data specialized for Korean language and Korean culture
* **Human Feedback**: DPO has been applied
* **Vision-Language Alignment**: Aligning the vision transformer with this language model 

**This model developed by [MLPLab at Seoultech](http://mlp.seoultech.ac.kr), [Teddysum](http://teddysum.ai/) and [Yonsei Univ](https://sites.google.com/view/hansaemkim/hansaem-kim)**

## Demo Video

<div style="display: flex; justify-content: space-between;">
  <!-- 첫 번째 컬럼 -->
  <div style="width: 49%;">
    <a>
      <img src="https://github.com/lhsstn/lhsstn/blob/main/x-llava_dem.gif?raw=true" style="width: 100%; height: auto;">
    </a>
    <p style="text-align: center;">Bllossom-V Demo</p>
  </div>

  <!-- 두 번째 컬럼 (ν•„μš”ν•˜λ‹€λ©΄) -->
  <div style="width: 49%;">
    <a>
      <img src="https://github.com/lhsstn/lhsstn/blob/main/bllossom_demo_kakao.gif?raw=true" style="width: 70%; height: auto;">
    </a>
    <p style="text-align: center;">Bllossom Demo(Kakao)γ…€γ…€γ…€γ…€γ…€γ…€γ…€γ…€</p>
  </div>
</div>



# NEWS
* [2024.06.18] We have reverted to the non-vocab-expansion model. However, we have significantly increased the amount of pre-training data to 250GB.
* [2024.05.08] Vocab Expansion Model Update
* [2024.04.25] We released Bllossom v2.0, based on llama-3

## Example code

### Colab Tutorial
 - [Inference-Code-Link](https://colab.research.google.com/drive/1fBOzUVZ6NRKk_ugeoTbAOokWKqSN47IG?usp=sharing)

### Install Dependencies
```bash
pip install torch transformers==4.40.0 accelerate
```

### Python code with Pipeline
```python
import transformers
import torch

model_id = "MLP-KTLim/llama-3-Korean-Bllossom-8B"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

pipeline.model.eval()

PROMPT = '''You are a helpful AI assistant. Please answer the user's questions kindly. 당신은 유λŠ₯ν•œ AI μ–΄μ‹œμŠ€ν„΄νŠΈ μž…λ‹ˆλ‹€. μ‚¬μš©μžμ˜ μ§ˆλ¬Έμ— λŒ€ν•΄ μΉœμ ˆν•˜κ²Œ λ‹΅λ³€ν•΄μ£Όμ„Έμš”.'''
instruction = "μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό λ§Œλ“€μ–΄μ€„λž˜?"

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

print(outputs[0]["generated_text"][len(prompt):])
```
```
# 물둠이죠! μ„œμšΈμ€ λ‹€μ–‘ν•œ 문화와 역사, μžμ—°μ„ κ²ΈλΉ„ν•œ λ„μ‹œλ‘œ, λ§Žμ€ κ΄€κ΄‘ λͺ…μ†Œλ₯Ό μžλž‘ν•©λ‹ˆλ‹€. μ—¬κΈ° μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό μ†Œκ°œν•΄ λ“œλ¦΄κ²Œμš”.

### μ½”μŠ€ 1: 역사와 λ¬Έν™” 탐방

1. **경볡ꢁ**
   - μ„œμšΈμ˜ λŒ€ν‘œμ μΈ ꢁꢐ둜, μ‘°μ„  μ™•μ‘°μ˜ 역사와 λ¬Έν™”λ₯Ό μ²΄ν—˜ν•  수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

2. **뢁촌 ν•œμ˜₯λ§ˆμ„**
   - 전톡 ν•œμ˜₯이 잘 보쑴된 λ§ˆμ„λ‘œ, μ‘°μ„ μ‹œλŒ€μ˜ μƒν™œμƒμ„ λŠλ‚„ 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **인사동**
   - 전톡 문화와 ν˜„λŒ€ 예술이 κ³΅μ‘΄ν•˜λŠ” 거리둜, λ‹€μ–‘ν•œ κ°€λŸ¬λ¦¬μ™€ 전톡 μŒμ‹μ μ΄ μžˆμŠ΅λ‹ˆλ‹€.

4. **μ²­κ³„μ²œ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ 천문으둜, μ‘°κΉ…κ³Ό 산책을 즐길 수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

### μ½”μŠ€ 2: μžμ—°κ³Ό μ‡Όν•‘

1. **남산 μ„œμšΈνƒ€μ›Œ**
   - μ„œμšΈμ˜ 전경을 ν•œλˆˆμ— λ³Ό 수 μžˆλŠ” 곳으둜, 특히 저녁 μ‹œκ°„λŒ€μ— 일λͺ°μ„ κ°μƒν•˜λŠ” 것이 μ’‹μŠ΅λ‹ˆλ‹€.

2. **λͺ…동**
   - μ‡Όν•‘κ³Ό μŒμ‹μ μ΄ μ¦λΉ„ν•œ μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λΈŒλžœλ“œμ™€ 전톡 μŒμ‹μ„ 맛볼 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **ν•œκ°•κ³΅μ›**
   - μ„œμšΈμ˜ μ£Όμš” 곡원 쀑 ν•˜λ‚˜λ‘œ, μ‘°κΉ…, μžμ „κ±° 타기, λ°°λ‚­ 여행을 즐길 수 μžˆμŠ΅λ‹ˆλ‹€.

4. **ν™λŒ€**
   - μ Šμ€μ΄λ“€μ΄ 즐겨 μ°ΎλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ 카페, λ ˆμŠ€ν† λž‘, 클럽이 μžˆμŠ΅λ‹ˆλ‹€.

### μ½”μŠ€ 3: ν˜„λŒ€μ™€ μ „ν†΅μ˜ μ‘°ν™”

1. **λ™λŒ€λ¬Έ λ””μžμΈ ν”ŒλΌμž (DDP)**
   - ν˜„λŒ€μ μΈ κ±΄μΆ•λ¬Όλ‘œ, λ‹€μ–‘ν•œ μ „μ‹œμ™€ μ΄λ²€νŠΈκ°€ μ—΄λ¦¬λŠ” κ³³μž…λ‹ˆλ‹€.

2. **μ΄νƒœμ›**
   - λ‹€μ–‘ν•œ ꡭ제 μŒμ‹κ³Ό μΉ΄νŽ˜κ°€ μžˆλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λ¬Έν™”λ₯Ό κ²½ν—˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

3. **κ΄‘ν™”λ¬Έ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ κ΄‘μž₯으둜, λ‹€μ–‘ν•œ 곡연과 행사가 μ—΄λ¦½λ‹ˆλ‹€.

4. **μ„œμšΈλžœλ“œ**
   - μ„œμšΈ 외곽에 μœ„μΉ˜ν•œ ν…Œλ§ˆνŒŒν¬λ‘œ, κ°€μ‘±λ‹¨μœ„ κ΄€κ΄‘κ°λ“€μ—κ²Œ 인기 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

이 μ½”μŠ€λ“€μ€ μ„œμšΈμ˜ λ‹€μ–‘ν•œ λ©΄λͺ¨λ₯Ό κ²½ν—˜ν•  수 μžˆλ„λ‘ κ΅¬μ„±λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€. 각 μ½”μŠ€λ§ˆλ‹€ μ‹œκ°„μ„ μ‘°μ ˆν•˜κ³ , 개인의 관심사에 맞게 μ„ νƒν•˜μ—¬ λ°©λ¬Έν•˜λ©΄ 쒋을 것 κ°™μŠ΅λ‹ˆλ‹€. 즐거운 μ—¬ν–‰ λ˜μ„Έμš”!
```

### Python code with AutoModel
```python

import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = 'MLP-KTLim/llama-3-Korean-Bllossom-8B'

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

model.eval()

PROMPT = '''You are a helpful AI assistant. Please answer the user's questions kindly. 당신은 유λŠ₯ν•œ AI μ–΄μ‹œμŠ€ν„΄νŠΈ μž…λ‹ˆλ‹€. μ‚¬μš©μžμ˜ μ§ˆλ¬Έμ— λŒ€ν•΄ μΉœμ ˆν•˜κ²Œ λ‹΅λ³€ν•΄μ£Όμ„Έμš”.'''
instruction = "μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό λ§Œλ“€μ–΄μ€„λž˜?"

messages = [
    {"role": "system", "content": f"{PROMPT}"},
    {"role": "user", "content": f"{instruction}"}
    ]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=2048,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
```
```
# 물둠이죠! μ„œμšΈμ€ λ‹€μ–‘ν•œ 문화와 역사, μžμ—°μ„ κ²ΈλΉ„ν•œ λ„μ‹œλ‘œ, λ§Žμ€ κ΄€κ΄‘ λͺ…μ†Œλ₯Ό μžλž‘ν•©λ‹ˆλ‹€. μ—¬κΈ° μ„œμšΈμ˜ 유λͺ…ν•œ κ΄€κ΄‘ μ½”μŠ€λ₯Ό μ†Œκ°œν•΄ λ“œλ¦΄κ²Œμš”.

### μ½”μŠ€ 1: 역사와 λ¬Έν™” 탐방

1. **경볡ꢁ**
   - μ„œμšΈμ˜ λŒ€ν‘œμ μΈ ꢁꢐ둜, μ‘°μ„  μ™•μ‘°μ˜ 역사와 λ¬Έν™”λ₯Ό μ²΄ν—˜ν•  수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

2. **뢁촌 ν•œμ˜₯λ§ˆμ„**
   - 전톡 ν•œμ˜₯이 잘 보쑴된 λ§ˆμ„λ‘œ, μ‘°μ„ μ‹œλŒ€μ˜ μƒν™œμƒμ„ λŠλ‚„ 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **인사동**
   - 전톡 문화와 ν˜„λŒ€ 예술이 κ³΅μ‘΄ν•˜λŠ” 거리둜, λ‹€μ–‘ν•œ κ°€λŸ¬λ¦¬μ™€ 전톡 μŒμ‹μ μ΄ μžˆμŠ΅λ‹ˆλ‹€.

4. **μ²­κ³„μ²œ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ 천문으둜, μ‘°κΉ…κ³Ό 산책을 즐길 수 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

### μ½”μŠ€ 2: μžμ—°κ³Ό μ‡Όν•‘

1. **남산 μ„œμšΈνƒ€μ›Œ**
   - μ„œμšΈμ˜ 전경을 ν•œλˆˆμ— λ³Ό 수 μžˆλŠ” 곳으둜, 특히 저녁 μ‹œκ°„λŒ€μ— 일λͺ°μ„ κ°μƒν•˜λŠ” 것이 μ’‹μŠ΅λ‹ˆλ‹€.

2. **λͺ…동**
   - μ‡Όν•‘κ³Ό μŒμ‹μ μ΄ μ¦λΉ„ν•œ μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λΈŒλžœλ“œμ™€ 전톡 μŒμ‹μ„ 맛볼 수 μžˆμŠ΅λ‹ˆλ‹€.

3. **ν•œκ°•κ³΅μ›**
   - μ„œμšΈμ˜ μ£Όμš” 곡원 쀑 ν•˜λ‚˜λ‘œ, μ‘°κΉ…, μžμ „κ±° 타기, λ°°λ‚­ 여행을 즐길 수 μžˆμŠ΅λ‹ˆλ‹€.

4. **ν™λŒ€**
   - μ Šμ€μ΄λ“€μ΄ 즐겨 μ°ΎλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ 카페, λ ˆμŠ€ν† λž‘, 클럽이 μžˆμŠ΅λ‹ˆλ‹€.

### μ½”μŠ€ 3: ν˜„λŒ€μ™€ μ „ν†΅μ˜ μ‘°ν™”

1. **λ™λŒ€λ¬Έ λ””μžμΈ ν”ŒλΌμž (DDP)**
   - ν˜„λŒ€μ μΈ κ±΄μΆ•λ¬Όλ‘œ, λ‹€μ–‘ν•œ μ „μ‹œμ™€ μ΄λ²€νŠΈκ°€ μ—΄λ¦¬λŠ” κ³³μž…λ‹ˆλ‹€.

2. **μ΄νƒœμ›**
   - λ‹€μ–‘ν•œ ꡭ제 μŒμ‹κ³Ό μΉ΄νŽ˜κ°€ μžˆλŠ” μ§€μ—­μœΌλ‘œ, λ‹€μ–‘ν•œ λ¬Έν™”λ₯Ό κ²½ν—˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

3. **κ΄‘ν™”λ¬Έ**
   - μ„œμšΈμ˜ 쀑심에 μœ„μΉ˜ν•œ κ΄‘μž₯으둜, λ‹€μ–‘ν•œ 곡연과 행사가 μ—΄λ¦½λ‹ˆλ‹€.

4. **μ„œμšΈλžœλ“œ**
   - μ„œμšΈ 외곽에 μœ„μΉ˜ν•œ ν…Œλ§ˆνŒŒν¬λ‘œ, κ°€μ‘±λ‹¨μœ„ κ΄€κ΄‘κ°λ“€μ—κ²Œ 인기 μžˆλŠ” κ³³μž…λ‹ˆλ‹€.

이 μ½”μŠ€λ“€μ€ μ„œμšΈμ˜ λ‹€μ–‘ν•œ λ©΄λͺ¨λ₯Ό κ²½ν—˜ν•  수 μžˆλ„λ‘ κ΅¬μ„±λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€. 각 μ½”μŠ€λ§ˆλ‹€ μ‹œκ°„μ„ μ‘°μ ˆν•˜κ³ , 개인의 관심사에 맞게 μ„ νƒν•˜μ—¬ λ°©λ¬Έν•˜λ©΄ 쒋을 것 κ°™μŠ΅λ‹ˆλ‹€. 즐거운 μ—¬ν–‰ λ˜μ„Έμš”!
```



## Citation
**Language Model**
```text
@misc{bllossom,
  author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
  title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
  year = {2024},
  journal = {LREC-COLING 2024},
  paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
 },
}
```

**Vision-Language Model**
```text
@misc{bllossom-V,
  author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
  title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
  year = {2024},
  publisher = {GitHub},
  journal = {NAACL 2024 findings},
  paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
 },
}
```

## Contact
 - μž„κ²½νƒœ(KyungTae Lim), Professor at Seoultech. `[email protected]`
 - ν•¨μ˜κ· (Younggyun Hahm), CEO of Teddysum. `[email protected]`
 - κΉ€ν•œμƒ˜(Hansaem Kim), Professor at Yonsei. `[email protected]`

## Contributor
 - 졜창수(Chansu Choi), [email protected]
 - 김상민(Sangmin Kim), [email protected]
 - μ›μΈν˜Έ(Inho Won), [email protected]
 - κΉ€λ―Όμ€€(Minjun Kim), [email protected] 
 - μ†‘μŠΉμš°(Seungwoo Song), [email protected]
 - μ‹ λ™μž¬(Dongjae Shin), [email protected]
 - μž„ν˜„μ„(Hyeonseok Lim), [email protected]
 - μœ‘μ •ν›ˆ(Jeonghun Yuk), [email protected]
 - μœ ν•œκ²°(Hangyeol Yoo), [email protected]
 - μ†‘μ„œν˜„(Seohyun Song), [email protected]