Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) phi-2-4bit-64rank - bnb 4bits - Model creator: https://huggingface.co/LoftQ/ - Original model: https://huggingface.co/LoftQ/phi-2-4bit-64rank/ Original model description: --- license: mit language: - en pipeline_tag: text-generation tags: - 'quantization ' - lora --- # LoftQ Initialization | [Paper](https://arxiv.org/abs/2310.08659) | [Code](https://github.com/yxli2123/LoftQ) | [PEFT Example](https://github.com/huggingface/peft/tree/main/examples/loftq_finetuning) | LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W. This model, `phi-2-4bit-64rank`, is obtained from [phi-2](https://huggingface.co/microsoft/phi-2). The backbone is under `LoftQ/phi-2-4bit-64rank` and LoRA adapters are under the `subfolder='loftq_init'`. ## Model Info ### Backbone - Stored format: `torch.float16` - Size: ~ 5.5 GiB - Loaded format: bitsandbytes nf4 - Size loaded on GPU: ~1.4 GiB ### LoRA adapters - rank: 64 - lora_alpha: 16 - target_modules: ["q_proj", "k_proj", "v_proj", "dense", "fc1", "fc2"] ## Usage **Training** Here's an example of loading this model and preparing for the LoRA fine-tuning. ```python import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel MODEL_ID = "LoftQ/phi-2-4bit-64rank" base_model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float32, # you may change it with different models quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float32, # float32 is tested and veryfied bnb_4bit_use_double_quant=False, bnb_4bit_quant_type='nf4', ), ) peft_model = PeftModel.from_pretrained( base_model, MODEL_ID, subfolder="loftq_init", is_trainable=True, ) # Do training with peft_model ... ``` ## Experiment Results We have conducted experiments on supervised fine-tuning of [GSM8K](https://huggingface.co/datasets/gsm8k). | Model | Bits | Rank | LoRA Initial | GSM8K | | --------| ---- | ---- | ---------------------- | --------- | | Phi-2 | 16 | - | Full model fine-tuning | 66.8±1.2 | | Phi-2 | 16 | 64 | Gaussian + 0 (LoRA) | 64.8±0.5 | | Phi-2 | 4 | 64 | Gaussian + 0 (QLoRA) | 60.2±0.6 | | Phi-2 | 4 | 64 | LoftQ | 64.1±0.7 | **Inference** Here is an example code for inference after the model has been fine-tuned on [GSM8K](https://huggingface.co/datasets/gsm8k). ```python import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel MODEL_ID = "LoftQ/phi-2-4bit-64rank" base_model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float32, # you may change it with different models quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float32, # float32 is tested and veryfied bnb_4bit_use_double_quant=False, bnb_4bit_quant_type='nf4', ), ) peft_model = PeftModel.from_pretrained( base_model, MODEL_ID, subfolder="gsm8k", is_trainable=True, ) # Do inference with peft_model ... ``` See the full code at our [Github Repo]((https://github.com/yxli2123/LoftQ)) ## Citation ```bibtex @article{li2023loftq, title={Loftq: Lora-fine-tuning-aware quantization for large language models}, author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo}, journal={arXiv preprint arXiv:2310.08659}, year={2023} } ```