Upload configuration_siglip.py with huggingface_hub
Browse files- configuration_siglip.py +307 -0
configuration_siglip.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Siglip model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
27 |
+
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class SiglipTextConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
|
34 |
+
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
35 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
|
36 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
44 |
+
the `inputs_ids` passed when calling [`SiglipModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
48 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 64):
|
54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
57 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
59 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
60 |
+
The epsilon used by the layer normalization layers.
|
61 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the attention probabilities.
|
63 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
64 |
+
The id of the padding token in the vocabulary.
|
65 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
66 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
67 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
68 |
+
The id of the end-of-sequence token in the vocabulary.
|
69 |
+
|
70 |
+
Example:
|
71 |
+
|
72 |
+
```python
|
73 |
+
>>> from transformers import SiglipTextConfig, SiglipTextModel
|
74 |
+
|
75 |
+
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
|
76 |
+
>>> configuration = SiglipTextConfig()
|
77 |
+
|
78 |
+
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
79 |
+
>>> model = SiglipTextModel(configuration)
|
80 |
+
|
81 |
+
>>> # Accessing the model configuration
|
82 |
+
>>> configuration = model.config
|
83 |
+
```"""
|
84 |
+
|
85 |
+
model_type = "siglip_text_model"
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
vocab_size=32000,
|
90 |
+
hidden_size=768,
|
91 |
+
intermediate_size=3072,
|
92 |
+
num_hidden_layers=12,
|
93 |
+
num_attention_heads=12,
|
94 |
+
max_position_embeddings=64,
|
95 |
+
hidden_act="gelu_pytorch_tanh",
|
96 |
+
layer_norm_eps=1e-6,
|
97 |
+
attention_dropout=0.0,
|
98 |
+
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
99 |
+
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
100 |
+
pad_token_id=1,
|
101 |
+
bos_token_id=49406,
|
102 |
+
eos_token_id=49407,
|
103 |
+
_flash_attn_2_enabled=True,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
107 |
+
|
108 |
+
self.vocab_size = vocab_size
|
109 |
+
self.hidden_size = hidden_size
|
110 |
+
self.intermediate_size = intermediate_size
|
111 |
+
self.num_hidden_layers = num_hidden_layers
|
112 |
+
self.num_attention_heads = num_attention_heads
|
113 |
+
self.max_position_embeddings = max_position_embeddings
|
114 |
+
self.layer_norm_eps = layer_norm_eps
|
115 |
+
self.hidden_act = hidden_act
|
116 |
+
self.attention_dropout = attention_dropout
|
117 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
118 |
+
|
119 |
+
@classmethod
|
120 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
121 |
+
cls._set_token_in_kwargs(kwargs)
|
122 |
+
|
123 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
124 |
+
|
125 |
+
# get the text config dict if we are loading from SiglipConfig
|
126 |
+
if config_dict.get("model_type") == "siglip":
|
127 |
+
config_dict = config_dict["text_config"]
|
128 |
+
|
129 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
130 |
+
logger.warning(
|
131 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
132 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
133 |
+
)
|
134 |
+
|
135 |
+
return cls.from_dict(config_dict, **kwargs)
|
136 |
+
|
137 |
+
|
138 |
+
class SiglipVisionConfig(PretrainedConfig):
|
139 |
+
r"""
|
140 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
141 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
142 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
143 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
144 |
+
|
145 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
146 |
+
documentation from [`PretrainedConfig`] for more information.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
150 |
+
Dimensionality of the encoder layers and the pooler layer.
|
151 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
152 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
153 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
154 |
+
Number of hidden layers in the Transformer encoder.
|
155 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
156 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
157 |
+
num_channels (`int`, *optional*, defaults to 3):
|
158 |
+
Number of channels in the input images.
|
159 |
+
image_size (`int`, *optional*, defaults to 224):
|
160 |
+
The size (resolution) of each image.
|
161 |
+
patch_size (`int`, *optional*, defaults to 16):
|
162 |
+
The size (resolution) of each patch.
|
163 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
164 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
165 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
166 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
167 |
+
The epsilon used by the layer normalization layers.
|
168 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
169 |
+
The dropout ratio for the attention probabilities.
|
170 |
+
|
171 |
+
Example:
|
172 |
+
|
173 |
+
```python
|
174 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
175 |
+
|
176 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
177 |
+
>>> configuration = SiglipVisionConfig()
|
178 |
+
|
179 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
180 |
+
>>> model = SiglipVisionModel(configuration)
|
181 |
+
|
182 |
+
>>> # Accessing the model configuration
|
183 |
+
>>> configuration = model.config
|
184 |
+
```"""
|
185 |
+
|
186 |
+
model_type = "siglip_vision_model"
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
hidden_size=768,
|
191 |
+
intermediate_size=3072,
|
192 |
+
num_hidden_layers=12,
|
193 |
+
num_attention_heads=12,
|
194 |
+
num_channels=3,
|
195 |
+
image_size=224,
|
196 |
+
patch_size=16,
|
197 |
+
hidden_act="gelu_pytorch_tanh",
|
198 |
+
layer_norm_eps=1e-6,
|
199 |
+
attention_dropout=0.0,
|
200 |
+
_flash_attn_2_enabled=True,
|
201 |
+
**kwargs,
|
202 |
+
):
|
203 |
+
super().__init__(**kwargs)
|
204 |
+
|
205 |
+
self.hidden_size = hidden_size
|
206 |
+
self.intermediate_size = intermediate_size
|
207 |
+
self.num_hidden_layers = num_hidden_layers
|
208 |
+
self.num_attention_heads = num_attention_heads
|
209 |
+
self.num_channels = num_channels
|
210 |
+
self.patch_size = patch_size
|
211 |
+
self.image_size = image_size
|
212 |
+
self.attention_dropout = attention_dropout
|
213 |
+
self.layer_norm_eps = layer_norm_eps
|
214 |
+
self.hidden_act = hidden_act
|
215 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
216 |
+
|
217 |
+
@classmethod
|
218 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
219 |
+
cls._set_token_in_kwargs(kwargs)
|
220 |
+
|
221 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
222 |
+
|
223 |
+
# get the vision config dict if we are loading from SiglipConfig
|
224 |
+
if config_dict.get("model_type") == "siglip":
|
225 |
+
config_dict = config_dict["vision_config"]
|
226 |
+
|
227 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
228 |
+
logger.warning(
|
229 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
230 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
231 |
+
)
|
232 |
+
|
233 |
+
return cls.from_dict(config_dict, **kwargs)
|
234 |
+
|
235 |
+
|
236 |
+
class SiglipConfig(PretrainedConfig):
|
237 |
+
r"""
|
238 |
+
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
|
239 |
+
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
|
240 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
|
241 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
242 |
+
|
243 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
244 |
+
documentation from [`PretrainedConfig`] for more information.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
text_config (`dict`, *optional*):
|
248 |
+
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
249 |
+
vision_config (`dict`, *optional*):
|
250 |
+
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
251 |
+
kwargs (*optional*):
|
252 |
+
Dictionary of keyword arguments.
|
253 |
+
|
254 |
+
Example:
|
255 |
+
|
256 |
+
```python
|
257 |
+
>>> from transformers import SiglipConfig, SiglipModel
|
258 |
+
|
259 |
+
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
|
260 |
+
>>> configuration = SiglipConfig()
|
261 |
+
|
262 |
+
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
263 |
+
>>> model = SiglipModel(configuration)
|
264 |
+
|
265 |
+
>>> # Accessing the model configuration
|
266 |
+
>>> configuration = model.config
|
267 |
+
|
268 |
+
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
|
269 |
+
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
|
270 |
+
|
271 |
+
>>> # Initializing a SiglipText and SiglipVision configuration
|
272 |
+
>>> config_text = SiglipTextConfig()
|
273 |
+
>>> config_vision = SiglipVisionConfig()
|
274 |
+
|
275 |
+
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
|
276 |
+
```"""
|
277 |
+
|
278 |
+
model_type = "siglip"
|
279 |
+
|
280 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
281 |
+
super().__init__(**kwargs)
|
282 |
+
|
283 |
+
if text_config is None:
|
284 |
+
text_config = {}
|
285 |
+
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
286 |
+
|
287 |
+
if vision_config is None:
|
288 |
+
vision_config = {}
|
289 |
+
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
|
290 |
+
|
291 |
+
self.text_config = SiglipTextConfig(**text_config)
|
292 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
293 |
+
|
294 |
+
self.initializer_factor = 1.0
|
295 |
+
|
296 |
+
@classmethod
|
297 |
+
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
|
298 |
+
r"""
|
299 |
+
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
|
300 |
+
model configuration.
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
[`SiglipConfig`]: An instance of a configuration object
|
304 |
+
"""
|
305 |
+
|
306 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
307 |
+
|