File size: 23,166 Bytes
c2d39cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# coding=utf-8
# Copyright 2024 RhapsodyAI and ModelBest Inc. and Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import List, Optional, Union, Dict
import math
import torch
from torchvision import transforms
from PIL import Image
import transformers
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy, PreTokenizedInput
from transformers.utils import TensorType
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
# from transformers.image_transforms import (
# convert_to_rgb,
# )
from transformers import LlamaTokenizer # for text processing
from transformers.utils import logging
logger = logging.get_logger(__name__)
# image tokenizer
def ensure_divide(length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = ensure_divide(width, patch_size)
best_height = ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(
original_size, grid, scale_resolution, patch_size, allow_upscale=False
):
width, height = original_size
grid_x, grid_y = grid
refine_width = ensure_divide(width, grid_x)
refine_height = ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = find_best_resize(
(grid_width, grid_height),
scale_resolution,
patch_size,
allow_upscale=allow_upscale,
)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
logger.info(f"I don't think it is so called `patch`. split_to_patches: patch size = {box}")
images.append(patch)
patches.append(images)
return patches
def slice_image(
image,
max_slice_nums=9,
scale_resolution=448,
patch_size=14,
never_split=False
):
original_size = image.size
original_width, original_height = original_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (scale_resolution * scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
source_image = None
best_grid = None
patches = []
if multiple <= 1 or never_split:
# don't need to slice, upsample
best_size = find_best_resize(
original_size, scale_resolution, patch_size, allow_upscale=True
)
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
else:
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
# source image, down-sampling and ensure divided by patch_size
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
candidate_grids = []
# find best grid
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
refine_size = get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
patches = split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def reshape_by_patch(image_tensor, patch_size=14):
"""
:param image_tensor: shape [3, H, W]
:param patch_size:
:return: [3, patch_size, HW/patch_size]
"""
patches = torch.nn.functional.unfold(
image_tensor,
(patch_size, patch_size),
stride=(patch_size, patch_size)
)
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
return patches
class MiniCPMVImageProcessor(BaseImageProcessor):
r"""
MiniCPMV image processor. -> Based on Phi3 image processor -> Used LlaVa-UHD. dynamic slicing one image image.
Args:
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
def __init__(
self,
query_num: int = 64,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
max_slice_nums: int = 9,
scale_resolution: int = 448,
patch_size: int = 14,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.query_num = query_num
self.image_mean = image_mean
self.image_std = image_std
self.max_slice_nums = max_slice_nums
self.scale_resolution = scale_resolution
self.patch_size = patch_size
def preprocess(
self,
image,
slice_mode: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`. # modified: one image per invoke.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
"""
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=self.image_mean, std=self.image_std)
]
)
images_ = []
tgt_sizes = []
if slice_mode:
slice_images = []
source_image, patches, best_grid = slice_image( # 耗时
image,
self.max_slice_nums,
self.scale_resolution,
self.patch_size,
)
slice_images.append(source_image)
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
slice_images.append(patches[i][j])
for image_ in slice_images:
slice_image_ = transform(image_) # 耗时
H, W = slice_image_.shape[1:]
slice_image_patchified_ = reshape_by_patch(slice_image_)
images_.append(slice_image_patchified_)
tgt_sizes.append(torch.Tensor([H // self.patch_size, W // self.patch_size]).type(torch.int32))
else:
best_grid = None
image_ = transform(image)
H, W = image_.shape[1:]
image_patchified_ = reshape_by_patch(image_)
images_.append(image_patchified_) # 耗时
tgt_sizes.append(torch.Tensor([H // self.patch_size, W // self.patch_size]).type(torch.int32))
return images_, tgt_sizes, best_grid
# text tokenizer
class MiniCPMVTextTokenizer(LlamaTokenizer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.im_start = "<image>"
self.im_end = "</image>"
self.ref_start = "<ref>"
self.ref_end = "</ref>"
self.box_start = "<box>"
self.box_end = "</box>"
self.quad_start = "<quad>"
self.quad_end = "</quad>"
self.point_start = "<point>"
self.point_end = "</point>"
self.slice_start = "<slice>"
self.slice_end = "</slice>"
@property
def eos_id(self):
return self.sp_model.eos_id()
@property
def bos_id(self):
return self.sp_model.bos_id()
@property
def unk_id(self):
return self.sp_model.unk_id()
@property
def im_start_id(self):
return self._convert_token_to_id(self.im_start)
@property
def im_end_id(self):
return self._convert_token_to_id(self.im_end)
def get_grid_placeholder(tokenizer, grid, query_num):
image_placeholder = (
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(image_placeholder)
slices.append("".join(lines))
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
return slice_placeholder
def pad(orig_items, max_length=None, padding_value=0, padding_side="left"):
"""
Args:
orig_items: a list of input_ids, each input_ids should be [1, length_i]
"""
assert isinstance(orig_items, list)
assert isinstance(orig_items[0], torch.Tensor)
padding_value = 2
items = [t.squeeze() for t in orig_items]
batch_size = len(items)
shape = items[0].shape
dim = len(shape)
assert dim == 1, "This pad function only expect B * Tensor([seq_len]) input." # Assuming 1D tensors for simplicity
if max_length is None:
max_length = max(item.shape[0] for item in items)
tensor = torch.full((batch_size, max_length), padding_value, dtype=items[0].dtype)
attention_mask = torch.zeros((batch_size, max_length), dtype=torch.int8)
for i, item in enumerate(items):
length = item.shape[0]
if padding_side == "left":
raise Exception("Please use right padding")
tensor[i, -length:] = item.clone()
attention_mask[i, -length:] = 1
else:
tensor[i, 0:length] = item.clone()
attention_mask[i, 0:length] = 1
return_dict = {
"input_ids": tensor,
"attention_mask": attention_mask,
}
return return_dict
def convert_to_tokens(input_str, tokenizer, max_inp_length):
if tokenizer.add_bos_token:
input_ids = tokenizer.encode(input_str)
else:
input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
# 跳过 im_start
image_start_tokens += 1
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bound = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
model_input = {}
model_input["input_ids"] = input_ids.unsqueeze(0)
model_input["image_bound"] = image_bound
return model_input
class MiniCPMVProcessor(ProcessorMixin):
r"""
Based on Siglip. Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`]):
The image processor is a required input.
tokenizer ([`SiglipTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor" # sorry, we can't find a way to make `image_processor_class` equal to `MiniCPMVImageProcessor`
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer, query_num=64, slice_mode=True, max_inp_length=2048):
super().__init__(image_processor, tokenizer)
self.query_num = query_num
self.slice_mode = slice_mode
self.max_inp_length = max_inp_length
def __call__(
self,
messages: Dict[str, Union[str, Image.Image]] = None, # ChatML format
slice_mode: bool = None,
max_inp_length: int = None,
padding: Union[bool, str, PaddingStrategy] = False,
padding_side: str = "left",
truncation: Union[bool, str, TruncationStrategy] = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` argument to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_input_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
# assert len(messages) == 1, 'Do not support batch > 1'
if slice_mode is None:
if self.slice_mode is None:
raise ValueError("`slice_mode` is not specified by config or usage")
else:
slice_mode = self.slice_mode
if max_inp_length is None:
if self.max_inp_length is None:
raise ValueError("`max_inp_length` is not specified by config or usage")
else:
max_inp_length = self.max_inp_length
processed_subimages_all_data = []
processed_text_all_data = []
tgt_sizes_all_data = []
for msgs in messages:
assert len(msgs) > 0, 'msgs is empty'
processed_text_all_msgs = []
processed_subimages_all_msgs = []
tgt_sizes_all_msgs = []
# process each message, each message is look like [text/image, ...]
for i, msg in enumerate(msgs):
role = msg["role"]
c = msg["content"]
assert role in ["user", "assistant"]
if i == 0:
assert role == "user", "The role of first msg should be user"
if isinstance(c, Image.Image):
processed_subimages, tgt_sizes, best_grid = self.image_processor.preprocess(image=c, slice_mode=slice_mode)
# make image placeholders
if slice_mode:
cur_msg = (
self.tokenizer.im_start
+ self.tokenizer.unk_token * self.query_num
+ self.tokenizer.im_end
)
if len(processed_subimages) > 1:
cur_msg += get_grid_placeholder(
self.tokenizer, best_grid, self.query_num
)
else:
cur_msg = (
self.tokenizer.im_start
+ self.tokenizer.unk_token * self.query_num
+ self.tokenizer.im_end
)
tgt_sizes_all_msgs.extend(tgt_sizes)
processed_subimages_all_msgs.extend(processed_subimages)
elif isinstance(c, str):
cur_msg = c
else:
raise NotImplementedError(f"message {type(c)}: {c} can't be handled")
role_title = "<用户>" if role == "user" else "<AI>"
processed_text_all_msgs.append(role_title + cur_msg)
processed_text_all_msgs_concat = "".join(processed_text_all_msgs)
processed_text_all_msgs_concat += "<AI>"
processed_text_all_data.append(processed_text_all_msgs_concat)
processed_subimages_all_data.append(processed_subimages_all_msgs)
tgt_sizes_all_msgs = torch.vstack(tgt_sizes_all_msgs)
tgt_sizes_all_data.append(tgt_sizes_all_msgs)
# convert text string to tokens, at this step, `input_ids` and `image_bound` is added
model_inputs_uncollated = []
for text in processed_text_all_data:
model_inputs_ = convert_to_tokens(
text, max_inp_length=max_inp_length, tokenizer=self.tokenizer
)
model_inputs_uncollated.append(model_inputs_)
# pad: in this step, attention mask is added
model_inputs_final = pad([i["input_ids"] for i in model_inputs_uncollated], padding_side=padding_side)
# add image bound back
model_inputs_final["image_bound"] = [i["image_bound"] for i in model_inputs_uncollated]
# add pixels values
model_inputs_final["pixel_values"] = processed_subimages_all_data
# add target sizes
model_inputs_final["tgt_sizes"] = tgt_sizes_all_data
return BatchFeature(data=model_inputs_final, tensor_type=None)
|