File size: 23,166 Bytes
c2d39cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# coding=utf-8
# Copyright 2024 RhapsodyAI and ModelBest Inc. and Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import re
from typing import List, Optional, Union, Dict

import math
import torch
from torchvision import transforms
from PIL import Image

import transformers
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy, PreTokenizedInput
from transformers.utils import TensorType
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
# from transformers.image_transforms import (
#     convert_to_rgb,
# )

from transformers import LlamaTokenizer # for text processing

from transformers.utils import logging

logger = logging.get_logger(__name__)


# image tokenizer
def ensure_divide(length, patch_size):
    return max(round(length / patch_size) * patch_size, patch_size)

def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
    width, height = original_size
    if (width * height > scale_resolution * scale_resolution) or allow_upscale:
        r = width / height
        height = int(scale_resolution / math.sqrt(r))
        width = int(height * r)
    best_width = ensure_divide(width, patch_size)
    best_height = ensure_divide(height, patch_size)
    return (best_width, best_height)

def get_refine_size(
    original_size, grid, scale_resolution, patch_size, allow_upscale=False
):
    width, height = original_size
    grid_x, grid_y = grid

    refine_width = ensure_divide(width, grid_x)
    refine_height = ensure_divide(height, grid_y)

    grid_width = refine_width / grid_x
    grid_height = refine_height / grid_y

    best_grid_size = find_best_resize(
        (grid_width, grid_height),
        scale_resolution,
        patch_size,
        allow_upscale=allow_upscale,
    )

    refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)

    return refine_size

def split_to_patches(image, grid):
    patches = []
    width, height = image.size
    grid_x = int(width / grid[0])
    grid_y = int(height / grid[1])

    for i in range(0, height, grid_y):
        images = []
        for j in range(0, width, grid_x):
            box = (j, i, j + grid_x, i + grid_y)
            patch = image.crop(box)
            logger.info(f"I don't think it is so called `patch`. split_to_patches: patch size = {box}")
            images.append(patch)
        patches.append(images)

    return patches

def slice_image(
    image, 
    max_slice_nums=9, 
    scale_resolution=448, 
    patch_size=14, 
    never_split=False
):
    original_size = image.size
    original_width, original_height = original_size
    log_ratio = math.log(original_width / original_height)
    ratio = original_width * original_height / (scale_resolution * scale_resolution)
    multiple = min(math.ceil(ratio), max_slice_nums)

    source_image = None
    best_grid = None
    patches = []

    if multiple <= 1 or never_split:
        # don't need to slice, upsample
        best_size = find_best_resize(
            original_size, scale_resolution, patch_size, allow_upscale=True
        )
        source_image = image.resize(best_size, Image.Resampling.BICUBIC)
    else:
        candidate_split_grids_nums = []
        for i in [multiple - 1, multiple, multiple + 1]:
            if i == 1 or i > max_slice_nums:
                continue
            candidate_split_grids_nums.append(i)

        # source image, down-sampling and ensure divided by patch_size
        best_resize = find_best_resize(original_size, scale_resolution, patch_size)
        source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
        candidate_grids = []

        # find best grid
        for split_grids_nums in candidate_split_grids_nums:
            m = 1
            while m <= split_grids_nums:
                if split_grids_nums % m == 0:
                    candidate_grids.append([m, split_grids_nums // m])
                m += 1

        best_grid = [1, 1]
        min_error = float("inf")
        for grid in candidate_grids:
            error = abs(log_ratio - math.log(grid[0] / grid[1]))
            if error < min_error:
                best_grid = grid
                min_error = error

        refine_size = get_refine_size(
            original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
        )

        refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
        patches = split_to_patches(refine_image, best_grid)

    return source_image, patches, best_grid

def reshape_by_patch(image_tensor, patch_size=14):
    """
    :param image_tensor: shape [3, H, W]
    :param patch_size:
    :return: [3, patch_size, HW/patch_size]
    """
    patches = torch.nn.functional.unfold(
        image_tensor,
        (patch_size, patch_size),
        stride=(patch_size, patch_size)
    )

    patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
    patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
    return patches

class MiniCPMVImageProcessor(BaseImageProcessor):
    r"""
    MiniCPMV image processor. -> Based on Phi3 image processor -> Used LlaVa-UHD. dynamic slicing one image image.
    
    Args:
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    """

    def __init__(
        self,
        query_num: int = 64, 
        image_mean: Optional[Union[float, List[float]]] = None, 
        image_std: Optional[Union[float, List[float]]] = None, 
        max_slice_nums: int = 9,
        scale_resolution: int = 448,
        patch_size: int = 14,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)

        self.query_num = query_num
        self.image_mean = image_mean
        self.image_std = image_std
        self.max_slice_nums = max_slice_nums
        self.scale_resolution = scale_resolution
        self.patch_size = patch_size

    def preprocess(
        self,
        image,
        slice_mode: bool = True,
        return_tensors: Optional[Union[str, TensorType]] = None,
    ):
        """
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`. # modified: one image per invoke.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
        """
        
        transform = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(mean=self.image_mean, std=self.image_std)
            ]
        )
        
        images_ = []
        tgt_sizes = []
        
        if slice_mode:
            slice_images = []
            source_image, patches, best_grid = slice_image( # 耗时
                image,
                self.max_slice_nums,
                self.scale_resolution,
                self.patch_size,
            )
            
            slice_images.append(source_image)
            if len(patches) > 0:
                for i in range(len(patches)):
                    for j in range(len(patches[0])):
                        slice_images.append(patches[i][j])
            
            for image_ in slice_images:
                slice_image_ = transform(image_) # 耗时
                H, W = slice_image_.shape[1:]
                slice_image_patchified_ = reshape_by_patch(slice_image_)
                images_.append(slice_image_patchified_)
                tgt_sizes.append(torch.Tensor([H // self.patch_size, W // self.patch_size]).type(torch.int32))
        
        else:
            best_grid = None
            image_ = transform(image)
            H, W = image_.shape[1:]
            image_patchified_ = reshape_by_patch(image_)
            images_.append(image_patchified_) # 耗时
            tgt_sizes.append(torch.Tensor([H // self.patch_size, W // self.patch_size]).type(torch.int32))
        
        return images_, tgt_sizes, best_grid


# text tokenizer
class MiniCPMVTextTokenizer(LlamaTokenizer):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.im_start = "<image>"
        self.im_end = "</image>"
        self.ref_start = "<ref>"
        self.ref_end = "</ref>"
        self.box_start = "<box>"
        self.box_end = "</box>"
        self.quad_start = "<quad>"
        self.quad_end = "</quad>"
        self.point_start = "<point>"
        self.point_end = "</point>"
        self.slice_start = "<slice>"
        self.slice_end = "</slice>"

    @property
    def eos_id(self):
        return self.sp_model.eos_id()

    @property
    def bos_id(self):
        return self.sp_model.bos_id()

    @property
    def unk_id(self):
        return self.sp_model.unk_id()

    @property
    def im_start_id(self):
        return self._convert_token_to_id(self.im_start)

    @property
    def im_end_id(self):
        return self._convert_token_to_id(self.im_end)

def get_grid_placeholder(tokenizer, grid, query_num):
    image_placeholder = (
        tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
    )

    cols = grid[0]
    rows = grid[1]
    slices = []
    for i in range(rows):
        lines = []
        for j in range(cols):
            lines.append(image_placeholder)
        slices.append("".join(lines))
    slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
    return slice_placeholder

def pad(orig_items, max_length=None, padding_value=0, padding_side="left"):
    """
    Args:
        orig_items: a list of input_ids, each input_ids should be [1, length_i]
    """
    assert isinstance(orig_items, list)
    assert isinstance(orig_items[0], torch.Tensor)
    padding_value = 2
    items = [t.squeeze() for t in orig_items]

    batch_size = len(items)
    shape = items[0].shape
        
    dim = len(shape)
    assert dim == 1, "This pad function only expect B * Tensor([seq_len]) input."  # Assuming 1D tensors for simplicity

    if max_length is None:
        max_length = max(item.shape[0] for item in items)

    tensor = torch.full((batch_size, max_length), padding_value, dtype=items[0].dtype)
    attention_mask = torch.zeros((batch_size, max_length), dtype=torch.int8)

    for i, item in enumerate(items):
        length = item.shape[0]
        if padding_side == "left":
            raise Exception("Please use right padding")
            tensor[i, -length:] = item.clone()
            attention_mask[i, -length:] = 1
        else:
            tensor[i, 0:length] = item.clone()
            attention_mask[i, 0:length] = 1
    
    return_dict = {
        "input_ids": tensor,
        "attention_mask": attention_mask,
    }
    
    return return_dict

def convert_to_tokens(input_str, tokenizer, max_inp_length):
    if tokenizer.add_bos_token:
        input_ids = tokenizer.encode(input_str)
    else:
        input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
    
    input_ids = input_ids[:max_inp_length]
    
    input_ids = torch.tensor(input_ids, dtype=torch.int32)
    
    image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
    
    # 跳过 im_start
    image_start_tokens += 1
    image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
    valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
    
    image_bound = torch.hstack(
        [
            image_start_tokens[:valid_image_nums].unsqueeze(-1),
            image_end_tokens[:valid_image_nums].unsqueeze(-1),
        ]
    )

    model_input = {}
    model_input["input_ids"] = input_ids.unsqueeze(0)
    model_input["image_bound"] = image_bound
    
    return model_input

class MiniCPMVProcessor(ProcessorMixin):
    r"""
    Based on Siglip. Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.

    [`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
    [`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.

    Args:
        image_processor ([`SiglipImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`SiglipTokenizer`]):
            The tokenizer is a required input.
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "AutoImageProcessor" # sorry, we can't find a way to make `image_processor_class` equal to `MiniCPMVImageProcessor`
    tokenizer_class = "AutoTokenizer"

    def __init__(self, image_processor, tokenizer, query_num=64, slice_mode=True, max_inp_length=2048):
        super().__init__(image_processor, tokenizer)
        self.query_num = query_num
        self.slice_mode = slice_mode
        self.max_inp_length = max_inp_length

    def __call__(
        self,
        messages: Dict[str, Union[str, Image.Image]] = None, # ChatML format
        slice_mode: bool = None, 
        max_inp_length: int = None, 
        padding: Union[bool, str, PaddingStrategy] = False, 
        padding_side: str = "left", 
        truncation: Union[bool, str, TruncationStrategy] = None, 
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` argument to
        SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_input_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """
        # assert len(messages) == 1, 'Do not support batch > 1'
        
        if slice_mode is None:
            if self.slice_mode is None:
                raise ValueError("`slice_mode` is not specified by config or usage")
            else:
                slice_mode = self.slice_mode

        if max_inp_length is None:
            if self.max_inp_length is None:
                raise ValueError("`max_inp_length` is not specified by config or usage")
            else:
                max_inp_length = self.max_inp_length
        
        processed_subimages_all_data = []
        processed_text_all_data = []
        tgt_sizes_all_data = []
        
        for msgs in messages:
            assert len(msgs) > 0, 'msgs is empty'
            
            processed_text_all_msgs = []
            processed_subimages_all_msgs = []
            tgt_sizes_all_msgs = []
            
            # process each message, each message is look like [text/image, ...]
            for i, msg in enumerate(msgs):
                
                role = msg["role"]
                c = msg["content"]
                
                assert role in ["user", "assistant"]
                
                if i == 0:
                    assert role == "user", "The role of first msg should be user"
                
                if isinstance(c, Image.Image):
                    
                    processed_subimages, tgt_sizes, best_grid = self.image_processor.preprocess(image=c, slice_mode=slice_mode)
                    
                    # make image placeholders
                    if slice_mode:
                        cur_msg = (
                            self.tokenizer.im_start
                            + self.tokenizer.unk_token * self.query_num
                            + self.tokenizer.im_end
                        )
                        if len(processed_subimages) > 1:
                            cur_msg += get_grid_placeholder(
                                self.tokenizer, best_grid, self.query_num
                            )
                    
                    else:
                        cur_msg = (
                            self.tokenizer.im_start
                            + self.tokenizer.unk_token * self.query_num
                            + self.tokenizer.im_end
                        )
                    
                    tgt_sizes_all_msgs.extend(tgt_sizes)
                    processed_subimages_all_msgs.extend(processed_subimages)

                elif isinstance(c, str):
                    cur_msg = c
                
                else:
                    raise NotImplementedError(f"message {type(c)}: {c} can't be handled")

                role_title = "<用户>" if role == "user" else "<AI>"
                processed_text_all_msgs.append(role_title + cur_msg)
            
            processed_text_all_msgs_concat = "".join(processed_text_all_msgs)
            processed_text_all_msgs_concat += "<AI>"
            processed_text_all_data.append(processed_text_all_msgs_concat)
            
            processed_subimages_all_data.append(processed_subimages_all_msgs)
            tgt_sizes_all_msgs = torch.vstack(tgt_sizes_all_msgs)
            tgt_sizes_all_data.append(tgt_sizes_all_msgs)
        
        # convert text string to tokens, at this step, `input_ids` and `image_bound` is added
        model_inputs_uncollated = []
        for text in processed_text_all_data:
            model_inputs_ = convert_to_tokens(
                text, max_inp_length=max_inp_length, tokenizer=self.tokenizer
            )
            model_inputs_uncollated.append(model_inputs_)
        
        # pad: in this step, attention mask is added
        model_inputs_final = pad([i["input_ids"] for i in model_inputs_uncollated], padding_side=padding_side)
        
        # add image bound back
        model_inputs_final["image_bound"] = [i["image_bound"] for i in model_inputs_uncollated]
        
        # add pixels values
        model_inputs_final["pixel_values"] = processed_subimages_all_data
        
        # add target sizes
        model_inputs_final["tgt_sizes"] = tgt_sizes_all_data
        
        return BatchFeature(data=model_inputs_final, tensor_type=None)