ppo-LunarLander-v2 / config.json
RadG's picture
Upload PPO LunarLander-v2 trained agent
48afbb7 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x793264df9900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x793264df9990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x793264df9a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x793264df9ab0>", "_build": "<function ActorCriticPolicy._build at 0x793264df9b40>", "forward": "<function ActorCriticPolicy.forward at 0x793264df9bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x793264df9c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x793264df9cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x793264df9d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x793264df9e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x793264df9ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x793264df9f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793264f91780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709880242328003259, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDeFr3PB1O8lYeTPf5Rir1QfLU9rctjPgAAgD8AAIA/zecfPXv+ibqgYM46HkuONb5O97md9e25AACAPwAAgD8zCIA8SMuFulFfiTsfp2043w2nuqrNC7kAAIA/AACAPxprLb1csze6qItnOgDelzWLubo6J5GEuQAAgD8AAIA/prCYPddTB7lu23S5jTJmtDCE4DoMv444AACAPwAAgD+a/6g89rhfuruRqrqOtjy2gIrmOoXxwzkAAIA/AACAP81cmzxId466ahCEu9WJD7cLtNU6yx+ZOgAAgD8AAIA/ZtxxvMMpA7ro6kU8GgMvtnHiVTsqsSa1AACAPwAAgD/ANbw94UaAuvCDObvgjBQ3aUh8u81gVDoAAIA/AACAP9YBrT5/JiM/8mLcvSHOkr6VNpc98Gs4vAAAAAAAAAAA2vraPbWd2z52rby9TAlovtw4ZbzDlbO7AAAAAAAAAACNzL49rmfWuHmmor0CLS285plROwJlGL0AAAAAAACAP9rPnT2PYke61qWVO1pHf7Z5HIO7bkCsugAAgD8AAAAAZsGvPI+KT7oKMJ67IEGoNqppars8YbY6AACAPwAAgD8a23g9pIAeufq9iToH9P+16WJiu6F1oLkAAIA/AACAPzMzSjvI0JY+zQh7vc9mlL5QvSy9I1TKPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUruqm0mdCMAWyUTegDjAF0lEdAkKh0DuBtlHV9lChoBkdAZeADJU5uImgHTegDaAhHQJComaMJhOR1fZQoaAZHQG9iM1TBInVoB01AA2gIR0CQqkR02cawdX2UKGgGR0BfZXK0UoKEaAdN6ANoCEdAkKxsXN1QqXV9lChoBkdAZXhfReC04WgHTegDaAhHQJCtqwJPZZl1fZQoaAZHQGKIG7z06HVoB03oA2gIR0CQrwcjZ+QVdX2UKGgGR0BkGc6DGtITaAdN6ANoCEdAkLU0PYnOSnV9lChoBkdAcDkHnlnyu2gHTUwDaAhHQJDApxIatLd1fZQoaAZHQGNnw0oBq9JoB03oA2gIR0CQxJf+S8radX2UKGgGR0Bi1bronrpraAdN6ANoCEdAkMWu6I3zc3V9lChoBkdAYVuTL4etCGgHTegDaAhHQJDMBE+gUUR1fZQoaAZHQGN9ChvitJZoB03oA2gIR0CQ4dckt29tdX2UKGgGR0BhOchib2DhaAdN6ANoCEdAkOPLBbfP5nV9lChoBkdATISr3j+72GgHS+xoCEdAkOTeb3Gn43V9lChoBkdAY74NiH6/I2gHTegDaAhHQJDumpJf6XV1fZQoaAZHQGzRT8gpz91oB00jAmgIR0CQ9NK+BYmtdX2UKGgGR0BjGXuG9HtnaAdN6ANoCEdAkPaU+X7cf3V9lChoBkdAYyFYqXnhbWgHTegDaAhHQJD2tmRNh3J1fZQoaAZHQGjE6gVXV9ZoB03oA2gIR0CQ+eW4EwFldX2UKGgGR0BcYFyaNMoMaAdN6ANoCEdAkPoEs4DLbHV9lChoBkdAZhMGJvYOD2gHTegDaAhHQJD7ld7fHgh1fZQoaAZHQF6ayYoiLVFoB03oA2gIR0CQ/YS2Yv38dX2UKGgGR0BnNht1p0wKaAdN6ANoCEdAkP6VSbYsd3V9lChoBkdAZVymqHXVb2gHTegDaAhHQJD/ocebNKR1fZQoaAZHQGfBx8c+7lJoB03oA2gIR0CRBHIcBEKFdX2UKGgGR0BkdOKwY+B6aAdN6ANoCEdAkQ/RFVktmXV9lChoBkdAbSO4tHxz72gHTZ8BaAhHQJERKkM1CPZ1fZQoaAZHQGAE9/rjYI1oB03oA2gIR0CRGBI4EOiGdX2UKGgGR0BxXOyC4BmxaAdNkAJoCEdAkSxtoWYWtXV9lChoBkdAZjrS6UaAF2gHTegDaAhHQJEuR5LRKHx1fZQoaAZHQGJ4iqQzUI9oB03oA2gIR0CRL+y6+WWydX2UKGgGR0BfL+hkAggYaAdN6ANoCEdAkTCVZPl+3HV9lChoBkdAZc1VtoBaLWgHTegDaAhHQJE36UVzp5h1fZQoaAZHQGUiJNCZ4OdoB03oA2gIR0CRPb6HCXQddX2UKGgGR0Blibgflp49aAdN6ANoCEdAkT+FhoduHnV9lChoBkdAYvdFqBVdX2gHTegDaAhHQJFDWmrKeTV1fZQoaAZHQGciry1/lQxoB03oA2gIR0CRQ4WI42jxdX2UKGgGR0BkEk8TzundaAdN6ANoCEdAkUfooNNJv3V9lChoBkdAZz/MKTjebmgHTegDaAhHQJFJZg7YChh1fZQoaAZHQGf07wSamXRoB03oA2gIR0CRSpO7xusLdX2UKGgGR0BtZArhBJI2aAdNQQJoCEdAkU/mXokiU3V9lChoBkdAYwo3CsOoYWgHTegDaAhHQJFQea6STyJ1fZQoaAZHwAuNsWO6unxoB0vvaAhHQJFRjh5xBE91fZQoaAZHQGMhZJK8L8doB03oA2gIR0CRW01UEPlNdX2UKGgGR0BlGdUOuq3maAdN6ANoCEdAkVyKEvkBCHV9lChoBkdAZBnHPu5SWWgHTegDaAhHQJFiBsenyd51fZQoaAZHQGQJKpDNQj5oB03oA2gIR0CRdy6ltTDPdX2UKGgGR0BnQtA9mpVCaAdN6ANoCEdAkXtEOEug6HV9lChoBkdAZQnQOWjXWmgHTegDaAhHQJF8BtcfNiZ1fZQoaAZHQGTf+NLlFMJoB03oA2gIR0CRg/DW9US7dX2UKGgGR0BiCUIE8q4IaAdN6ANoCEdAkYox+rlvInV9lChoBkdAYaloxHoX9GgHTegDaAhHQJGMIoQWepZ1fZQoaAZHQGbNTIvJzT5oB03oA2gIR0CRj+xLTQVsdX2UKGgGR0BmfCtDD0lJaAdN6ANoCEdAkZPVq33HrHV9lChoBkdAZJRtgrpaBGgHTegDaAhHQJGVNTR6WxB1fZQoaAZHQF+5ZUkv9LpoB03oA2gIR0CRlo3FUADJdX2UKGgGR0Bk/Kk0rK/3aAdN6ANoCEdAkZu74FiazHV9lChoBkdAZUiOYplSTGgHTegDaAhHQJGcUlv60pp1fZQoaAZHQFo9a7VawEBoB03oA2gIR0CRnXgxrSE2dX2UKGgGR0Bg4xFEy+HraAdN6ANoCEdAkanwA2hqTXV9lChoBkdAYzn01ZTya2gHTegDaAhHQJGrakLx7Rh1fZQoaAZHQG3HvgWJrL1oB01pA2gIR0CRrO5imVJMdX2UKGgGR0BhNeeDnNgSaAdN6ANoCEdAkbGXmeUY9HV9lChoBkdAZALxBE8aGmgHTegDaAhHQJHJpFjNILB1fZQoaAZHQGd6nGjsUqRoB03oA2gIR0CRynwIdELIdX2UKGgGR0Bw1Urz5GjLaAdNUwFoCEdAkdIwfU4JeHV9lChoBkdAYexTyauwHWgHTegDaAhHQJHUf0Eovzx1fZQoaAZHQHAXCB5HEuRoB00FA2gIR0CR1741xbSrdX2UKGgGR0BjVNafSQYDaAdN6ANoCEdAkdqVFDv3J3V9lChoBkdAZ6aBun/DL2gHTegDaAhHQJHcOU5dWyV1fZQoaAZHQE7meyzHCGhoB00hAWgIR0CR3Kv6j323dX2UKGgGR0BiWtiKBNEgaAdN6ANoCEdAkd899c8klnV9lChoBkdAXVzPUrkKeGgHTegDaAhHQJHic4MnZ011fZQoaAZHQF/t5wwTM7loB03oA2gIR0CR5NjtXxOMdX2UKGgGR0BiWarmyPdVaAdN6ANoCEdAkemxyjpLVXV9lChoBkdAYBz7Hhjvu2gHTegDaAhHQJHqPfpD/l11fZQoaAZHQGP61IAfdRBoB03oA2gIR0CR61w6QvHtdX2UKGgGR0ApJ14gRsdlaAdL52gIR0CR8IXlbNbDdX2UKGgGR0Bm2OkBS1mbaAdN6ANoCEdAkfSff0mMO3V9lChoBkdAY909C/oJRmgHTegDaAhHQJH3AmPYFq11fZQoaAZHQEmBdi2DxsloB00TAWgIR0CR+CMvh60IdX2UKGgGR0BjG/NgSeyzaAdN6ANoCEdAkfqSXdCVr3V9lChoBkdAYqxBbfP5YmgHTegDaAhHQJITPTSb6P91fZQoaAZHQGc7ALApKBdoB03oA2gIR0CSGSHavicYdX2UKGgGR0BkXhUtI066aAdN6ANoCEdAkhrAVGkN4XV9lChoBkdAYIfo4dZJTWgHTegDaAhHQJIdS8dxQzl1fZQoaAZHQGhaD9fkWARoB03oA2gIR0CSH+pmEoOQdX2UKGgGR0BbE0yxiXpoaAdN6ANoCEdAkiF70OEuhHV9lChoBkdAYKlxAjY7JWgHTegDaAhHQJIh8UoKD011fZQoaAZHQF+iY6nzg/FoB03oA2gIR0CSJGpgTh5xdX2UKGgGR0Bh2f3N9ph4aAdN6ANoCEdAkielZPl+3HV9lChoBkdASILxNIsiCGgHTQMBaAhHQJIqYfr8iwB1fZQoaAZHQF8BbL2YfGNoB03oA2gIR0CSL9oFV1fWdX2UKGgGR0BlZQg3cYZVaAdN6ANoCEdAkjJxOP/7znV9lChoBkdAYRTnIQvpQmgHTegDaAhHQJI45jBl+Vl1fZQoaAZHQGGFpo9LYf5oB03oA2gIR0CSPaHryDqXdX2UKGgGR0BGUgB91EE1aAdL4GgIR0CSPhkUKzAvdX2UKGgGR0Bf+NOh0yP/aAdN6ANoCEdAkkBH27FsHnV9lChoBkdAYCQ/fO2RaGgHTegDaAhHQJJBs2ZRbbF1fZQoaAZHQGM/h0IToMdoB03oA2gIR0CSRFqur6tUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}