RMHalak commited on
Commit
5d6d2b2
1 Parent(s): cd18493

Task: SequenceClassification

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: facebook/opt-6.7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "facebook/opt-6.7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "score",
19
+ "classifier",
20
+ "score"
21
+ ],
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "fc1",
29
+ "out_proj",
30
+ "q_proj",
31
+ "fc2",
32
+ "k_proj"
33
+ ],
34
+ "task_type": "SEQ_CLS",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4b4bbd06a5769350db16a9e57c1313a6cdeb6d17251aae8a40ec9642c271b8f
3
+ size 37818360
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "1": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "2": {
14
+ "content": "</s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ }
21
+ },
22
+ "bos_token": "</s>",
23
+ "clean_up_tokenization_spaces": true,
24
+ "eos_token": "</s>",
25
+ "errors": "replace",
26
+ "model_max_length": 1000000000000000019884624838656,
27
+ "pad_token": "</s>",
28
+ "tokenizer_class": "GPT2Tokenizer",
29
+ "unk_token": "</s>"
30
+ }
trainer_state-opt-fp16-QLORA-super_glue-axg-sequence_classification.json ADDED
@@ -0,0 +1,682 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.88888888888889,
5
+ "eval_steps": 1,
6
+ "global_step": 40,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.2222222222222222,
13
+ "grad_norm": 2.578125,
14
+ "learning_rate": 2.5e-05,
15
+ "loss": 0.663,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.2222222222222222,
20
+ "eval_accuracy": 0.6388888888888888,
21
+ "eval_loss": 0.6485392451286316,
22
+ "eval_runtime": 0.6135,
23
+ "eval_samples_per_second": 117.366,
24
+ "eval_steps_per_second": 8.15,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.4444444444444444,
29
+ "grad_norm": 8.875,
30
+ "learning_rate": 5e-05,
31
+ "loss": 0.756,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.4444444444444444,
36
+ "eval_accuracy": 0.6111111111111112,
37
+ "eval_loss": 0.6574299931526184,
38
+ "eval_runtime": 0.6097,
39
+ "eval_samples_per_second": 118.09,
40
+ "eval_steps_per_second": 8.201,
41
+ "step": 2
42
+ },
43
+ {
44
+ "epoch": 0.6666666666666666,
45
+ "grad_norm": 4.46875,
46
+ "learning_rate": 4.868421052631579e-05,
47
+ "loss": 0.7238,
48
+ "step": 3
49
+ },
50
+ {
51
+ "epoch": 0.6666666666666666,
52
+ "eval_accuracy": 0.5277777777777778,
53
+ "eval_loss": 0.7034233808517456,
54
+ "eval_runtime": 0.608,
55
+ "eval_samples_per_second": 118.427,
56
+ "eval_steps_per_second": 8.224,
57
+ "step": 3
58
+ },
59
+ {
60
+ "epoch": 0.8888888888888888,
61
+ "grad_norm": 13.25,
62
+ "learning_rate": 4.736842105263158e-05,
63
+ "loss": 0.7122,
64
+ "step": 4
65
+ },
66
+ {
67
+ "epoch": 0.8888888888888888,
68
+ "eval_accuracy": 0.5,
69
+ "eval_loss": 0.7725694179534912,
70
+ "eval_runtime": 0.6086,
71
+ "eval_samples_per_second": 118.309,
72
+ "eval_steps_per_second": 8.216,
73
+ "step": 4
74
+ },
75
+ {
76
+ "epoch": 1.1111111111111112,
77
+ "grad_norm": 9.0,
78
+ "learning_rate": 4.605263157894737e-05,
79
+ "loss": 0.7642,
80
+ "step": 5
81
+ },
82
+ {
83
+ "epoch": 1.1111111111111112,
84
+ "eval_accuracy": 0.4583333333333333,
85
+ "eval_loss": 0.8437364101409912,
86
+ "eval_runtime": 0.6086,
87
+ "eval_samples_per_second": 118.308,
88
+ "eval_steps_per_second": 8.216,
89
+ "step": 5
90
+ },
91
+ {
92
+ "epoch": 1.3333333333333333,
93
+ "grad_norm": 11.5,
94
+ "learning_rate": 4.473684210526316e-05,
95
+ "loss": 0.7398,
96
+ "step": 6
97
+ },
98
+ {
99
+ "epoch": 1.3333333333333333,
100
+ "eval_accuracy": 0.4722222222222222,
101
+ "eval_loss": 0.8946533203125,
102
+ "eval_runtime": 0.6095,
103
+ "eval_samples_per_second": 118.131,
104
+ "eval_steps_per_second": 8.204,
105
+ "step": 6
106
+ },
107
+ {
108
+ "epoch": 1.5555555555555556,
109
+ "grad_norm": 7.34375,
110
+ "learning_rate": 4.342105263157895e-05,
111
+ "loss": 0.6496,
112
+ "step": 7
113
+ },
114
+ {
115
+ "epoch": 1.5555555555555556,
116
+ "eval_accuracy": 0.4583333333333333,
117
+ "eval_loss": 0.9147610068321228,
118
+ "eval_runtime": 0.6082,
119
+ "eval_samples_per_second": 118.375,
120
+ "eval_steps_per_second": 8.22,
121
+ "step": 7
122
+ },
123
+ {
124
+ "epoch": 1.7777777777777777,
125
+ "grad_norm": 8.9375,
126
+ "learning_rate": 4.210526315789474e-05,
127
+ "loss": 0.8145,
128
+ "step": 8
129
+ },
130
+ {
131
+ "epoch": 1.7777777777777777,
132
+ "eval_accuracy": 0.4722222222222222,
133
+ "eval_loss": 0.8886311650276184,
134
+ "eval_runtime": 0.6076,
135
+ "eval_samples_per_second": 118.496,
136
+ "eval_steps_per_second": 8.229,
137
+ "step": 8
138
+ },
139
+ {
140
+ "epoch": 2.0,
141
+ "grad_norm": 3.578125,
142
+ "learning_rate": 4.078947368421053e-05,
143
+ "loss": 0.7133,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 2.0,
148
+ "eval_accuracy": 0.4583333333333333,
149
+ "eval_loss": 0.8463134765625,
150
+ "eval_runtime": 0.6081,
151
+ "eval_samples_per_second": 118.399,
152
+ "eval_steps_per_second": 8.222,
153
+ "step": 9
154
+ },
155
+ {
156
+ "epoch": 2.2222222222222223,
157
+ "grad_norm": 4.9375,
158
+ "learning_rate": 3.9473684210526316e-05,
159
+ "loss": 0.7018,
160
+ "step": 10
161
+ },
162
+ {
163
+ "epoch": 2.2222222222222223,
164
+ "eval_accuracy": 0.4861111111111111,
165
+ "eval_loss": 0.7938368320465088,
166
+ "eval_runtime": 0.6078,
167
+ "eval_samples_per_second": 118.455,
168
+ "eval_steps_per_second": 8.226,
169
+ "step": 10
170
+ },
171
+ {
172
+ "epoch": 2.4444444444444446,
173
+ "grad_norm": 4.96875,
174
+ "learning_rate": 3.815789473684211e-05,
175
+ "loss": 0.7119,
176
+ "step": 11
177
+ },
178
+ {
179
+ "epoch": 2.4444444444444446,
180
+ "eval_accuracy": 0.4861111111111111,
181
+ "eval_loss": 0.7457139492034912,
182
+ "eval_runtime": 0.6077,
183
+ "eval_samples_per_second": 118.489,
184
+ "eval_steps_per_second": 8.228,
185
+ "step": 11
186
+ },
187
+ {
188
+ "epoch": 2.6666666666666665,
189
+ "grad_norm": 10.1875,
190
+ "learning_rate": 3.6842105263157895e-05,
191
+ "loss": 0.7619,
192
+ "step": 12
193
+ },
194
+ {
195
+ "epoch": 2.6666666666666665,
196
+ "eval_accuracy": 0.5,
197
+ "eval_loss": 0.7044270634651184,
198
+ "eval_runtime": 0.608,
199
+ "eval_samples_per_second": 118.417,
200
+ "eval_steps_per_second": 8.223,
201
+ "step": 12
202
+ },
203
+ {
204
+ "epoch": 2.888888888888889,
205
+ "grad_norm": 2.6875,
206
+ "learning_rate": 3.5526315789473684e-05,
207
+ "loss": 0.7001,
208
+ "step": 13
209
+ },
210
+ {
211
+ "epoch": 2.888888888888889,
212
+ "eval_accuracy": 0.6111111111111112,
213
+ "eval_loss": 0.6843125820159912,
214
+ "eval_runtime": 0.608,
215
+ "eval_samples_per_second": 118.411,
216
+ "eval_steps_per_second": 8.223,
217
+ "step": 13
218
+ },
219
+ {
220
+ "epoch": 3.111111111111111,
221
+ "grad_norm": 4.90625,
222
+ "learning_rate": 3.421052631578947e-05,
223
+ "loss": 0.7011,
224
+ "step": 14
225
+ },
226
+ {
227
+ "epoch": 3.111111111111111,
228
+ "eval_accuracy": 0.6111111111111112,
229
+ "eval_loss": 0.6841227412223816,
230
+ "eval_runtime": 0.6072,
231
+ "eval_samples_per_second": 118.583,
232
+ "eval_steps_per_second": 8.235,
233
+ "step": 14
234
+ },
235
+ {
236
+ "epoch": 3.3333333333333335,
237
+ "grad_norm": 7.15625,
238
+ "learning_rate": 3.289473684210527e-05,
239
+ "loss": 0.6936,
240
+ "step": 15
241
+ },
242
+ {
243
+ "epoch": 3.3333333333333335,
244
+ "eval_accuracy": 0.6527777777777778,
245
+ "eval_loss": 0.6861708164215088,
246
+ "eval_runtime": 0.6089,
247
+ "eval_samples_per_second": 118.237,
248
+ "eval_steps_per_second": 8.211,
249
+ "step": 15
250
+ },
251
+ {
252
+ "epoch": 3.5555555555555554,
253
+ "grad_norm": 3.125,
254
+ "learning_rate": 3.157894736842105e-05,
255
+ "loss": 0.6712,
256
+ "step": 16
257
+ },
258
+ {
259
+ "epoch": 3.5555555555555554,
260
+ "eval_accuracy": 0.6388888888888888,
261
+ "eval_loss": 0.689697265625,
262
+ "eval_runtime": 0.6077,
263
+ "eval_samples_per_second": 118.487,
264
+ "eval_steps_per_second": 8.228,
265
+ "step": 16
266
+ },
267
+ {
268
+ "epoch": 3.7777777777777777,
269
+ "grad_norm": 3.8125,
270
+ "learning_rate": 3.0263157894736844e-05,
271
+ "loss": 0.7103,
272
+ "step": 17
273
+ },
274
+ {
275
+ "epoch": 3.7777777777777777,
276
+ "eval_accuracy": 0.6111111111111112,
277
+ "eval_loss": 0.6951768398284912,
278
+ "eval_runtime": 0.6084,
279
+ "eval_samples_per_second": 118.35,
280
+ "eval_steps_per_second": 8.219,
281
+ "step": 17
282
+ },
283
+ {
284
+ "epoch": 4.0,
285
+ "grad_norm": 6.03125,
286
+ "learning_rate": 2.8947368421052634e-05,
287
+ "loss": 0.7363,
288
+ "step": 18
289
+ },
290
+ {
291
+ "epoch": 4.0,
292
+ "eval_accuracy": 0.5972222222222222,
293
+ "eval_loss": 0.7005886435508728,
294
+ "eval_runtime": 0.6084,
295
+ "eval_samples_per_second": 118.351,
296
+ "eval_steps_per_second": 8.219,
297
+ "step": 18
298
+ },
299
+ {
300
+ "epoch": 4.222222222222222,
301
+ "grad_norm": 11.1875,
302
+ "learning_rate": 2.7631578947368426e-05,
303
+ "loss": 0.6435,
304
+ "step": 19
305
+ },
306
+ {
307
+ "epoch": 4.222222222222222,
308
+ "eval_accuracy": 0.5833333333333334,
309
+ "eval_loss": 0.7067057490348816,
310
+ "eval_runtime": 0.6096,
311
+ "eval_samples_per_second": 118.111,
312
+ "eval_steps_per_second": 8.202,
313
+ "step": 19
314
+ },
315
+ {
316
+ "epoch": 4.444444444444445,
317
+ "grad_norm": 4.65625,
318
+ "learning_rate": 2.6315789473684212e-05,
319
+ "loss": 0.6981,
320
+ "step": 20
321
+ },
322
+ {
323
+ "epoch": 4.444444444444445,
324
+ "eval_accuracy": 0.5833333333333334,
325
+ "eval_loss": 0.7121039628982544,
326
+ "eval_runtime": 0.6082,
327
+ "eval_samples_per_second": 118.379,
328
+ "eval_steps_per_second": 8.221,
329
+ "step": 20
330
+ },
331
+ {
332
+ "epoch": 4.666666666666667,
333
+ "grad_norm": 2.703125,
334
+ "learning_rate": 2.5e-05,
335
+ "loss": 0.6926,
336
+ "step": 21
337
+ },
338
+ {
339
+ "epoch": 4.666666666666667,
340
+ "eval_accuracy": 0.5416666666666666,
341
+ "eval_loss": 0.7211371660232544,
342
+ "eval_runtime": 0.6081,
343
+ "eval_samples_per_second": 118.398,
344
+ "eval_steps_per_second": 8.222,
345
+ "step": 21
346
+ },
347
+ {
348
+ "epoch": 4.888888888888889,
349
+ "grad_norm": 5.15625,
350
+ "learning_rate": 2.368421052631579e-05,
351
+ "loss": 0.7108,
352
+ "step": 22
353
+ },
354
+ {
355
+ "epoch": 4.888888888888889,
356
+ "eval_accuracy": 0.5,
357
+ "eval_loss": 0.73095703125,
358
+ "eval_runtime": 0.6083,
359
+ "eval_samples_per_second": 118.372,
360
+ "eval_steps_per_second": 8.22,
361
+ "step": 22
362
+ },
363
+ {
364
+ "epoch": 5.111111111111111,
365
+ "grad_norm": 5.15625,
366
+ "learning_rate": 2.236842105263158e-05,
367
+ "loss": 0.672,
368
+ "step": 23
369
+ },
370
+ {
371
+ "epoch": 5.111111111111111,
372
+ "eval_accuracy": 0.4861111111111111,
373
+ "eval_loss": 0.7393120527267456,
374
+ "eval_runtime": 0.6079,
375
+ "eval_samples_per_second": 118.437,
376
+ "eval_steps_per_second": 8.225,
377
+ "step": 23
378
+ },
379
+ {
380
+ "epoch": 5.333333333333333,
381
+ "grad_norm": 3.140625,
382
+ "learning_rate": 2.105263157894737e-05,
383
+ "loss": 0.7141,
384
+ "step": 24
385
+ },
386
+ {
387
+ "epoch": 5.333333333333333,
388
+ "eval_accuracy": 0.4722222222222222,
389
+ "eval_loss": 0.7498372197151184,
390
+ "eval_runtime": 0.6082,
391
+ "eval_samples_per_second": 118.379,
392
+ "eval_steps_per_second": 8.221,
393
+ "step": 24
394
+ },
395
+ {
396
+ "epoch": 5.555555555555555,
397
+ "grad_norm": 2.359375,
398
+ "learning_rate": 1.9736842105263158e-05,
399
+ "loss": 0.6683,
400
+ "step": 25
401
+ },
402
+ {
403
+ "epoch": 5.555555555555555,
404
+ "eval_accuracy": 0.4861111111111111,
405
+ "eval_loss": 0.7597113847732544,
406
+ "eval_runtime": 0.6096,
407
+ "eval_samples_per_second": 118.114,
408
+ "eval_steps_per_second": 8.202,
409
+ "step": 25
410
+ },
411
+ {
412
+ "epoch": 5.777777777777778,
413
+ "grad_norm": 10.5625,
414
+ "learning_rate": 1.8421052631578947e-05,
415
+ "loss": 0.7034,
416
+ "step": 26
417
+ },
418
+ {
419
+ "epoch": 5.777777777777778,
420
+ "eval_accuracy": 0.4722222222222222,
421
+ "eval_loss": 0.7664387822151184,
422
+ "eval_runtime": 0.6087,
423
+ "eval_samples_per_second": 118.28,
424
+ "eval_steps_per_second": 8.214,
425
+ "step": 26
426
+ },
427
+ {
428
+ "epoch": 6.0,
429
+ "grad_norm": 10.0625,
430
+ "learning_rate": 1.7105263157894737e-05,
431
+ "loss": 0.692,
432
+ "step": 27
433
+ },
434
+ {
435
+ "epoch": 6.0,
436
+ "eval_accuracy": 0.4722222222222222,
437
+ "eval_loss": 0.7706434726715088,
438
+ "eval_runtime": 0.6079,
439
+ "eval_samples_per_second": 118.431,
440
+ "eval_steps_per_second": 8.224,
441
+ "step": 27
442
+ },
443
+ {
444
+ "epoch": 6.222222222222222,
445
+ "grad_norm": 2.578125,
446
+ "learning_rate": 1.5789473684210526e-05,
447
+ "loss": 0.6832,
448
+ "step": 28
449
+ },
450
+ {
451
+ "epoch": 6.222222222222222,
452
+ "eval_accuracy": 0.4722222222222222,
453
+ "eval_loss": 0.7749837040901184,
454
+ "eval_runtime": 0.6081,
455
+ "eval_samples_per_second": 118.408,
456
+ "eval_steps_per_second": 8.223,
457
+ "step": 28
458
+ },
459
+ {
460
+ "epoch": 6.444444444444445,
461
+ "grad_norm": 4.34375,
462
+ "learning_rate": 1.4473684210526317e-05,
463
+ "loss": 0.7021,
464
+ "step": 29
465
+ },
466
+ {
467
+ "epoch": 6.444444444444445,
468
+ "eval_accuracy": 0.4583333333333333,
469
+ "eval_loss": 0.7776963710784912,
470
+ "eval_runtime": 0.6079,
471
+ "eval_samples_per_second": 118.436,
472
+ "eval_steps_per_second": 8.225,
473
+ "step": 29
474
+ },
475
+ {
476
+ "epoch": 6.666666666666667,
477
+ "grad_norm": 2.625,
478
+ "learning_rate": 1.3157894736842106e-05,
479
+ "loss": 0.6819,
480
+ "step": 30
481
+ },
482
+ {
483
+ "epoch": 6.666666666666667,
484
+ "eval_accuracy": 0.4722222222222222,
485
+ "eval_loss": 0.7759331464767456,
486
+ "eval_runtime": 0.6086,
487
+ "eval_samples_per_second": 118.3,
488
+ "eval_steps_per_second": 8.215,
489
+ "step": 30
490
+ },
491
+ {
492
+ "epoch": 6.888888888888889,
493
+ "grad_norm": 3.53125,
494
+ "learning_rate": 1.1842105263157895e-05,
495
+ "loss": 0.6352,
496
+ "step": 31
497
+ },
498
+ {
499
+ "epoch": 6.888888888888889,
500
+ "eval_accuracy": 0.4583333333333333,
501
+ "eval_loss": 0.7765842080116272,
502
+ "eval_runtime": 0.6091,
503
+ "eval_samples_per_second": 118.211,
504
+ "eval_steps_per_second": 8.209,
505
+ "step": 31
506
+ },
507
+ {
508
+ "epoch": 7.111111111111111,
509
+ "grad_norm": 2.46875,
510
+ "learning_rate": 1.0526315789473684e-05,
511
+ "loss": 0.6888,
512
+ "step": 32
513
+ },
514
+ {
515
+ "epoch": 7.111111111111111,
516
+ "eval_accuracy": 0.4722222222222222,
517
+ "eval_loss": 0.7748752236366272,
518
+ "eval_runtime": 0.6086,
519
+ "eval_samples_per_second": 118.309,
520
+ "eval_steps_per_second": 8.216,
521
+ "step": 32
522
+ },
523
+ {
524
+ "epoch": 7.333333333333333,
525
+ "grad_norm": 3.375,
526
+ "learning_rate": 9.210526315789474e-06,
527
+ "loss": 0.6618,
528
+ "step": 33
529
+ },
530
+ {
531
+ "epoch": 7.333333333333333,
532
+ "eval_accuracy": 0.5,
533
+ "eval_loss": 0.7731662392616272,
534
+ "eval_runtime": 0.6075,
535
+ "eval_samples_per_second": 118.515,
536
+ "eval_steps_per_second": 8.23,
537
+ "step": 33
538
+ },
539
+ {
540
+ "epoch": 7.555555555555555,
541
+ "grad_norm": 6.65625,
542
+ "learning_rate": 7.894736842105263e-06,
543
+ "loss": 0.6754,
544
+ "step": 34
545
+ },
546
+ {
547
+ "epoch": 7.555555555555555,
548
+ "eval_accuracy": 0.5138888888888888,
549
+ "eval_loss": 0.7746039628982544,
550
+ "eval_runtime": 0.6088,
551
+ "eval_samples_per_second": 118.274,
552
+ "eval_steps_per_second": 8.214,
553
+ "step": 34
554
+ },
555
+ {
556
+ "epoch": 7.777777777777778,
557
+ "grad_norm": 6.375,
558
+ "learning_rate": 6.578947368421053e-06,
559
+ "loss": 0.6597,
560
+ "step": 35
561
+ },
562
+ {
563
+ "epoch": 7.777777777777778,
564
+ "eval_accuracy": 0.5138888888888888,
565
+ "eval_loss": 0.7731662392616272,
566
+ "eval_runtime": 0.6081,
567
+ "eval_samples_per_second": 118.392,
568
+ "eval_steps_per_second": 8.222,
569
+ "step": 35
570
+ },
571
+ {
572
+ "epoch": 8.0,
573
+ "grad_norm": 5.75,
574
+ "learning_rate": 5.263157894736842e-06,
575
+ "loss": 0.6567,
576
+ "step": 36
577
+ },
578
+ {
579
+ "epoch": 8.0,
580
+ "eval_accuracy": 0.5138888888888888,
581
+ "eval_loss": 0.7737358808517456,
582
+ "eval_runtime": 0.6081,
583
+ "eval_samples_per_second": 118.395,
584
+ "eval_steps_per_second": 8.222,
585
+ "step": 36
586
+ },
587
+ {
588
+ "epoch": 8.222222222222221,
589
+ "grad_norm": 4.90625,
590
+ "learning_rate": 3.9473684210526315e-06,
591
+ "loss": 0.6282,
592
+ "step": 37
593
+ },
594
+ {
595
+ "epoch": 8.222222222222221,
596
+ "eval_accuracy": 0.5138888888888888,
597
+ "eval_loss": 0.7725694179534912,
598
+ "eval_runtime": 0.6079,
599
+ "eval_samples_per_second": 118.436,
600
+ "eval_steps_per_second": 8.225,
601
+ "step": 37
602
+ },
603
+ {
604
+ "epoch": 8.444444444444445,
605
+ "grad_norm": 7.71875,
606
+ "learning_rate": 2.631578947368421e-06,
607
+ "loss": 0.6826,
608
+ "step": 38
609
+ },
610
+ {
611
+ "epoch": 8.444444444444445,
612
+ "eval_accuracy": 0.5138888888888888,
613
+ "eval_loss": 0.7727593183517456,
614
+ "eval_runtime": 0.6088,
615
+ "eval_samples_per_second": 118.264,
616
+ "eval_steps_per_second": 8.213,
617
+ "step": 38
618
+ },
619
+ {
620
+ "epoch": 8.666666666666666,
621
+ "grad_norm": 4.53125,
622
+ "learning_rate": 1.3157894736842106e-06,
623
+ "loss": 0.6556,
624
+ "step": 39
625
+ },
626
+ {
627
+ "epoch": 8.666666666666666,
628
+ "eval_accuracy": 0.5138888888888888,
629
+ "eval_loss": 0.7752007246017456,
630
+ "eval_runtime": 0.6082,
631
+ "eval_samples_per_second": 118.385,
632
+ "eval_steps_per_second": 8.221,
633
+ "step": 39
634
+ },
635
+ {
636
+ "epoch": 8.88888888888889,
637
+ "grad_norm": 3.796875,
638
+ "learning_rate": 0.0,
639
+ "loss": 0.6745,
640
+ "step": 40
641
+ },
642
+ {
643
+ "epoch": 8.88888888888889,
644
+ "eval_accuracy": 0.5138888888888888,
645
+ "eval_loss": 0.7738173007965088,
646
+ "eval_runtime": 0.6087,
647
+ "eval_samples_per_second": 118.294,
648
+ "eval_steps_per_second": 8.215,
649
+ "step": 40
650
+ },
651
+ {
652
+ "epoch": 8.88888888888889,
653
+ "step": 40,
654
+ "total_flos": 3923745857077248.0,
655
+ "train_loss": 0.695129108428955,
656
+ "train_runtime": 77.1509,
657
+ "train_samples_per_second": 36.811,
658
+ "train_steps_per_second": 0.518
659
+ }
660
+ ],
661
+ "logging_steps": 1,
662
+ "max_steps": 40,
663
+ "num_input_tokens_seen": 0,
664
+ "num_train_epochs": 10,
665
+ "save_steps": 500,
666
+ "stateful_callbacks": {
667
+ "TrainerControl": {
668
+ "args": {
669
+ "should_epoch_stop": false,
670
+ "should_evaluate": false,
671
+ "should_log": false,
672
+ "should_save": false,
673
+ "should_training_stop": false
674
+ },
675
+ "attributes": {}
676
+ }
677
+ },
678
+ "total_flos": 3923745857077248.0,
679
+ "train_batch_size": 4,
680
+ "trial_name": null,
681
+ "trial_params": null
682
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b59541e082b3010735170aaacb9cc96a83dd078e422a650f332ae2d6021a3b32
3
+ size 5112
vocab.json ADDED
The diff for this file is too large to render. See raw diff