Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: tongyi-qianwen
|
4 |
+
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
base_model: Qwen/Qwen2.5-72B
|
9 |
+
tags:
|
10 |
+
- chat
|
11 |
+
---
|
12 |
+
|
13 |
+
# Qwen2.5-72B-Instruct
|
14 |
+
|
15 |
+
## Introduction
|
16 |
+
|
17 |
+
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
|
18 |
+
|
19 |
+
- Pretrained on our **latest large-scale dataset**, encompassing up to **18T tokens**.
|
20 |
+
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
|
21 |
+
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
|
22 |
+
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
|
23 |
+
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
|
24 |
+
|
25 |
+
**This repo contains the instruction-tuned 72B Qwen2.5 model**, which has the following features:
|
26 |
+
- Type: Causal Language Models
|
27 |
+
- Training Stage: Pretraining, SFT, DRPO
|
28 |
+
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
|
29 |
+
- Number of Parameters: 72.7B
|
30 |
+
- Number of Paramaters (Non-Embedding): 70.0B
|
31 |
+
- Number of Layers: 80
|
32 |
+
- Number of Attention Heads (GQA): 64 for Q and 8 for KV
|
33 |
+
- Context Length: Full 131,072 tokens and generation 8192 tokens
|
34 |
+
- Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
|
35 |
+
|
36 |
+
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
|
37 |
+
|
38 |
+
## Requirements
|
39 |
+
|
40 |
+
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
|
41 |
+
|
42 |
+
With `transformers<4.37.0`, you will encounter the following error:
|
43 |
+
```
|
44 |
+
KeyError: 'qwen2'
|
45 |
+
```
|
46 |
+
|
47 |
+
## Quickstart
|
48 |
+
|
49 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
53 |
+
|
54 |
+
model_name = "Qwen/Qwen2.5-72B-Instruct"
|
55 |
+
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(
|
57 |
+
model_name,
|
58 |
+
torch_dtype="auto",
|
59 |
+
device_map="auto"
|
60 |
+
)
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
62 |
+
|
63 |
+
prompt = "Give me a short introduction to large language model."
|
64 |
+
messages = [
|
65 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
66 |
+
{"role": "user", "content": prompt}
|
67 |
+
]
|
68 |
+
text = tokenizer.apply_chat_template(
|
69 |
+
messages,
|
70 |
+
tokenize=False,
|
71 |
+
add_generation_prompt=True
|
72 |
+
)
|
73 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
74 |
+
|
75 |
+
generated_ids = model.generate(
|
76 |
+
**model_inputs,
|
77 |
+
max_new_tokens=512
|
78 |
+
)
|
79 |
+
generated_ids = [
|
80 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
81 |
+
]
|
82 |
+
|
83 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
84 |
+
```
|
85 |
+
|
86 |
+
### Processing Long Texts
|
87 |
+
|
88 |
+
To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
|
89 |
+
|
90 |
+
For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
|
91 |
+
|
92 |
+
1. **Install vLLM**: You can install vLLM by running the following command.
|
93 |
+
|
94 |
+
```bash
|
95 |
+
pip install "vllm>=0.4.3"
|
96 |
+
```
|
97 |
+
|
98 |
+
Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
|
99 |
+
|
100 |
+
2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
|
101 |
+
```json
|
102 |
+
{
|
103 |
+
"architectures": [
|
104 |
+
"Qwen2ForCausalLM"
|
105 |
+
],
|
106 |
+
// ...
|
107 |
+
"vocab_size": 152064,
|
108 |
+
|
109 |
+
// adding the following snippets
|
110 |
+
"rope_scaling": {
|
111 |
+
"factor": 4.0,
|
112 |
+
"original_max_position_embeddings": 32768,
|
113 |
+
"type": "yarn"
|
114 |
+
}
|
115 |
+
}
|
116 |
+
```
|
117 |
+
This snippet enable YARN to support longer contexts.
|
118 |
+
|
119 |
+
3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
|
120 |
+
|
121 |
+
```bash
|
122 |
+
python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-72B-Instruct --model path/to/weights
|
123 |
+
```
|
124 |
+
|
125 |
+
Then you can access the Chat API by:
|
126 |
+
|
127 |
+
```bash
|
128 |
+
curl http://localhost:8000/v1/chat/completions \
|
129 |
+
-H "Content-Type: application/json" \
|
130 |
+
-d '{
|
131 |
+
"model": "Qwen2-72B-Instruct",
|
132 |
+
"messages": [
|
133 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
134 |
+
{"role": "user", "content": "Your Long Input Here."}
|
135 |
+
]
|
136 |
+
}'
|
137 |
+
```
|
138 |
+
|
139 |
+
For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
|
140 |
+
|
141 |
+
**Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
|
142 |
+
|
143 |
+
## Evaultion & Performance
|
144 |
+
|
145 |
+
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
|
146 |
+
|
147 |
+
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
|
148 |
+
|
149 |
+
## Citation
|
150 |
+
|
151 |
+
If you find our work helpful, feel free to give us a cite.
|
152 |
+
|
153 |
+
```
|
154 |
+
@misc{qwen2.5,
|
155 |
+
title = {Qwen2.5: A Party of Foundation Models},
|
156 |
+
url = {https://qwenlm.github.io/blog/qwen2.5/},
|
157 |
+
author = {Qwen Team},
|
158 |
+
month = {September},
|
159 |
+
year = {2024}
|
160 |
+
}
|
161 |
+
|
162 |
+
@article{qwen2,
|
163 |
+
title={Qwen2 Technical Report},
|
164 |
+
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
|
165 |
+
journal={arXiv preprint arXiv:2407.10671},
|
166 |
+
year={2024}
|
167 |
+
}
|
168 |
+
```
|