Qwen
/

Text Generation
Transformers
Safetensors
Chinese
English
qwen
custom_code
File size: 8,824 Bytes
580a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9914c
580a183
 
 
 
 
 
 
af9914c
580a183
 
 
af9914c
580a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4200b0
580a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9914c
580a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e110da
580a183
 
 
 
 
 
4339056
580a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4200b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4200b0
 
580a183
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""Tokenization classes for QWen."""

from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import os
import unicodedata
from io import open
import base64
import tiktoken
from typing import List, Optional, Tuple, Union

from transformers import PreTrainedTokenizer, AddedToken

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}


class QWenTokenizer(PreTrainedTokenizer):
    """QWen tokenizer."""

    """NOTE: This tokenizer will not handle special tokens to avoid injection attacks"""

    vocab_files_names = VOCAB_FILES_NAMES

    def __init__(
        self,
        vocab_file,
        errors="replace",
        max_len=None,
        unk_token="<|endoftext|>",
        bos_token="<|endoftext|>",
        eos_token="<|endoftext|>",
        pad_token=None,
        add_prefix_space=False,
        add_bos_token=False,
        add_more_sp_tokens=True,
        **kwargs,
    ):
        bos_token = (
            AddedToken(bos_token, lstrip=False, rstrip=False)
            if isinstance(bos_token, str)
            else bos_token
        )
        eos_token = (
            AddedToken(eos_token, lstrip=False, rstrip=False)
            if isinstance(eos_token, str)
            else eos_token
        )
        unk_token = (
            AddedToken(unk_token, lstrip=False, rstrip=False)
            if isinstance(unk_token, str)
            else unk_token
        )
        pad_token = (
            AddedToken(pad_token, lstrip=False, rstrip=False)
            if isinstance(pad_token, str)
            else pad_token
        )
        super().__init__(
            errors=errors,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            pad_token=pad_token,
            add_prefix_space=add_prefix_space,
            add_bos_token=add_bos_token,
        )
        self.add_bos_token = add_bos_token
        self.max_len = max_len if max_len is not None else int(1e12)

        self.errors = errors  # how to handle errors in decoding

        name = "Qwen"
        ENDOFTEXT = "<|endoftext|>"
        IMSTART = "<|im_start|>"
        IMEND = "<|im_end|>"
        if add_more_sp_tokens:
            special_tokens = (
                ENDOFTEXT,
                IMSTART,
                IMEND,
                "<R>",
                "<S>",
                "<X>",
                "<mask>",
                "<sep>",
            ) + tuple([f"<extra_{i}>" for i in range(200)])
        else:
            special_tokens = (ENDOFTEXT, IMSTART, IMEND)

        PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""

        def load_tiktoken_bpe(tiktoken_bpe_file: str) -> "dict[bytes, int]":
            contents = open(tiktoken_bpe_file, "rb").read()
            return {
                base64.b64decode(token): int(rank)
                for token, rank in (
                    line.split() for line in contents.splitlines() if line
                )
            }

        mergeable_ranks = load_tiktoken_bpe(vocab_file)
        special_tokens = {
            token: index
            for index, token in enumerate(special_tokens, start=len(mergeable_ranks))
        }
        self.special_tokens = special_tokens
        enc = tiktoken.Encoding(
            name,
            pat_str=PAT_STR,
            mergeable_ranks=mergeable_ranks,
            special_tokens=special_tokens,
        )
        assert (
            len(mergeable_ranks) + len(special_tokens) == enc.n_vocab
        ), f"{len(mergeable_ranks) + len(special_tokens)} != {enc.n_vocab} in encoding"

        self.mergeable_ranks = mergeable_ranks
        self.encoder = self.mergeable_ranks
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.tokenizer = enc  # type: tiktoken.Encoding
        self.eod_id = self.tokenizer.eot_token
        self.im_start_id = special_tokens[IMSTART]
        self.im_end_id = special_tokens[IMEND]

    def __len__(self):
        return self.tokenizer.n_vocab

    def get_vocab(self):
        return self.mergeable_ranks

    def convert_tokens_to_ids(self, tokens):
        ids = []
        # Remove support for py2
        if isinstance(tokens, str):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens)
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token))
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(
                    len(ids), self.max_len
                )
            )
        return ids

    def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
        """
        Save only the vocabulary of the tokenizer (vocabulary + added tokens).

        Returns:
            `Tuple(str)`: Paths to the files saved.
        """
        file_path = os.path.join(save_directory, "qwen.tiktoken")
        with open(file_path, "w", encoding="utf8") as w:
            for k, v in self.mergeable_ranks.items():
                line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
                w.write(line)
        return (file_path,)

    def tokenize(self, text: str, **kwargs) -> List[str]:
        """
        Converts a string in a sequence of tokens, replacing unknown tokens with the `unk_token`.

        Args:
            text (`str`):
                The sequence to be encoded.
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the underlying model specific encode method. See details in
                [`~PreTrainedTokenizerBase.__call__`]

        Returns:
            `List[str]`: The list of tokens.
        """
        tokens = []
        text = unicodedata.normalize("NFC", text)
        for t in self.tokenizer.encode_ordinary(text):
            tokens.append(self.decoder[t])
        return tokens

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        """
        Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we
        often want to remove sub-word tokenization artifacts at the same time.
        """
        text = "".join(tokens)
        text = bytearray([self.byte_decoder[c] for c in text]).decode(
            "utf-8", errors=self.errors
        )
        return text

    @property
    def vocab_size(self):
        return self.tokenizer.n_vocab

    def _convert_id_to_token(self, index: int) -> str:
        if index >= self.tokenizer.n_vocab:
            return self.unk_token
        return self.tokenizer.decode([index])

    def _convert_token_to_id(self, token: str) -> int:
        """Converts a token to an id using the vocab."""
        return self.encoder.get(token.encode('UTF-8'), self.tokenizer.encode(self.unk_token, allowed_special='all')[0])

    @property
    def all_special_tokens(self) -> List[str]:
        """
        `List[str]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.

        Convert tokens of `tokenizers.AddedToken` type to string.
        """
        all_toks = [str(s) for s in self.special_tokens.keys()]
        return all_toks

    @property
    def all_special_ids(self) -> List[int]:
        """
        `List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.
        """
        all_ids = [v for v in self.special_tokens.values()]
        return all_ids

    def _tokenize(self, text, **kwargs):
        """
        Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
        vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).

        Do NOT take care of added tokens.
        """
        raise NotImplementedError

    def _decode(
        self,
        token_ids: Union[int, List[int]],
        skip_special_tokens: bool = False,
        **kwargs,
    ) -> str:
        if isinstance(token_ids, int):
            token_ids = [token_ids]
        if skip_special_tokens:
            token_ids = [i for i in token_ids if i not in self.all_special_ids]
        return self.tokenizer.decode(token_ids)