update readme
Browse files
README.md
CHANGED
@@ -43,9 +43,9 @@ For more details about the open-source model of Qwen-7B, please refer to the [Gi
|
|
43 |
|
44 |
## 依赖项(Dependency)
|
45 |
|
46 |
-
运行Qwen-7B-Chat
|
47 |
|
48 |
-
To run Qwen-7B-Chat, please make sure
|
49 |
|
50 |
```bash
|
51 |
pip install transformers==4.31.0 accelerate tiktoken einops
|
@@ -292,9 +292,9 @@ Qwen-7B-Chat also has the capability to be used as a [HuggingFace Agent](https:/
|
|
292 |
|
293 |
## 量化(Quantization)
|
294 |
|
295 |
-
如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes
|
296 |
|
297 |
-
We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`. Note that the requirements for `bitsandbytes`
|
298 |
|
299 |
```
|
300 |
**Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
|
@@ -309,7 +309,7 @@ Windows users should find another option, which might be [bitsandbytes-windows-w
|
|
309 |
Then you only need to add your quantization configuration to `AutoModelForCausalLM.from_pretrained`. See the example below:
|
310 |
|
311 |
```python
|
312 |
-
from transformers import BitsAndBytesConfig
|
313 |
|
314 |
# quantization configuration for NF4 (4 bits)
|
315 |
quantization_config = BitsAndBytesConfig(
|
|
|
43 |
|
44 |
## 依赖项(Dependency)
|
45 |
|
46 |
+
运行Qwen-7B-Chat,请确保满足上述要求,再执行以下pip命令安装依赖库
|
47 |
|
48 |
+
To run Qwen-7B-Chat, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries.
|
49 |
|
50 |
```bash
|
51 |
pip install transformers==4.31.0 accelerate tiktoken einops
|
|
|
292 |
|
293 |
## 量化(Quantization)
|
294 |
|
295 |
+
如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes`。请注意,`bitsandbytes`的安装要求是:
|
296 |
|
297 |
+
We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`. Note that the requirements for `bitsandbytes` are:
|
298 |
|
299 |
```
|
300 |
**Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
|
|
|
309 |
Then you only need to add your quantization configuration to `AutoModelForCausalLM.from_pretrained`. See the example below:
|
310 |
|
311 |
```python
|
312 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
313 |
|
314 |
# quantization configuration for NF4 (4 bits)
|
315 |
quantization_config = BitsAndBytesConfig(
|