munish0838
commited on
Commit
•
bd174da
1
Parent(s):
24ebc52
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: llama-3
|
4 |
+
license_link: https://llama.meta.com/llama3/license/
|
5 |
+
tags:
|
6 |
+
- text-generation-inference
|
7 |
+
- transformers
|
8 |
+
- unsloth
|
9 |
+
- llama
|
10 |
+
datasets:
|
11 |
+
- Replete-AI/code_bagel_hermes-2.5
|
12 |
+
- Replete-AI/code_bagel
|
13 |
+
- Replete-AI/OpenHermes-2.5-Uncensored
|
14 |
+
- teknium/OpenHermes-2.5
|
15 |
+
- layoric/tiny-codes-alpaca
|
16 |
+
- glaiveai/glaive-code-assistant-v3
|
17 |
+
- ajibawa-2023/Code-290k-ShareGPT
|
18 |
+
- TIGER-Lab/MathInstruct
|
19 |
+
- chargoddard/commitpack-ft-instruct-rated
|
20 |
+
- iamturun/code_instructions_120k_alpaca
|
21 |
+
- ise-uiuc/Magicoder-Evol-Instruct-110K
|
22 |
+
- cognitivecomputations/dolphin-coder
|
23 |
+
- nickrosh/Evol-Instruct-Code-80k-v1
|
24 |
+
- coseal/CodeUltraFeedback_binarized
|
25 |
+
- glaiveai/glaive-function-calling-v2
|
26 |
+
- CyberNative/Code_Vulnerability_Security_DPO
|
27 |
+
- jondurbin/airoboros-2.2
|
28 |
+
- camel-ai
|
29 |
+
- lmsys/lmsys-chat-1m
|
30 |
+
- CollectiveCognition/chats-data-2023-09-22
|
31 |
+
- CoT-Alpaca-GPT4
|
32 |
+
- WizardLM/WizardLM_evol_instruct_70k
|
33 |
+
- WizardLM/WizardLM_evol_instruct_V2_196k
|
34 |
+
- teknium/GPT4-LLM-Cleaned
|
35 |
+
- GPTeacher
|
36 |
+
- OpenGPT
|
37 |
+
- meta-math/MetaMathQA
|
38 |
+
- Open-Orca/SlimOrca
|
39 |
+
- garage-bAInd/Open-Platypus
|
40 |
+
- anon8231489123/ShareGPT_Vicuna_unfiltered
|
41 |
+
- Unnatural-Instructions-GPT4
|
42 |
+
model-index:
|
43 |
+
- name: Replete-Coder-llama3-8b
|
44 |
+
results:
|
45 |
+
- task:
|
46 |
+
name: HumanEval
|
47 |
+
type: text-generation
|
48 |
+
dataset:
|
49 |
+
type: openai_humaneval
|
50 |
+
name: HumanEval
|
51 |
+
metrics:
|
52 |
+
- name: pass@1
|
53 |
+
type: pass@1
|
54 |
+
value: 0.6468383584267833
|
55 |
+
verified: true
|
56 |
+
- task:
|
57 |
+
name: AI2 Reasoning Challenge
|
58 |
+
type: text-generation
|
59 |
+
dataset:
|
60 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
61 |
+
type: ai2_arc
|
62 |
+
config: ARC-Challenge
|
63 |
+
split: test
|
64 |
+
args:
|
65 |
+
num_few_shot: 25
|
66 |
+
metrics:
|
67 |
+
- type: accuracy
|
68 |
+
value: null
|
69 |
+
name: normalized accuracy
|
70 |
+
source:
|
71 |
+
url: https://www.placeholderurl.com
|
72 |
+
name: Open LLM Leaderboard
|
73 |
+
- task:
|
74 |
+
name: Text Generation
|
75 |
+
type: text-generation
|
76 |
+
dataset:
|
77 |
+
name: HellaSwag (10-Shot)
|
78 |
+
type: hellaswag
|
79 |
+
split: validation
|
80 |
+
args:
|
81 |
+
num_few_shot: 10
|
82 |
+
metrics:
|
83 |
+
- type: accuracy
|
84 |
+
value: null
|
85 |
+
name: normalized accuracy
|
86 |
+
source:
|
87 |
+
url: https://www.placeholderurl.com
|
88 |
+
name: Open LLM Leaderboard
|
89 |
+
- task:
|
90 |
+
name: Text Generation
|
91 |
+
type: text-generation
|
92 |
+
dataset:
|
93 |
+
name: MMLU (5-Shot)
|
94 |
+
type: cais/mmlu
|
95 |
+
config: all
|
96 |
+
split: test
|
97 |
+
args:
|
98 |
+
num_few_shot: 5
|
99 |
+
metrics:
|
100 |
+
- type: accuracy
|
101 |
+
value: null
|
102 |
+
name: accuracy
|
103 |
+
source:
|
104 |
+
url: https://www.placeholderurl.com
|
105 |
+
name: Open LLM Leaderboard
|
106 |
+
- task:
|
107 |
+
name: Text Generation
|
108 |
+
type: text-generation
|
109 |
+
dataset:
|
110 |
+
name: TruthfulQA (0-shot)
|
111 |
+
type: truthful_qa
|
112 |
+
config: multiple_choice
|
113 |
+
split: validation
|
114 |
+
args:
|
115 |
+
num_few_shot: 0
|
116 |
+
metrics:
|
117 |
+
- type: multiple_choice_accuracy
|
118 |
+
value: null
|
119 |
+
source:
|
120 |
+
url: https://www.placeholderurl.com
|
121 |
+
name: Open LLM Leaderboard
|
122 |
+
- task:
|
123 |
+
name: Text Generation
|
124 |
+
type: text-generation
|
125 |
+
dataset:
|
126 |
+
name: Winogrande (5-shot)
|
127 |
+
type: winogrande
|
128 |
+
config: winogrande_xl
|
129 |
+
split: validation
|
130 |
+
args:
|
131 |
+
num_few_shot: 5
|
132 |
+
metrics:
|
133 |
+
- type: accuracy
|
134 |
+
value: null
|
135 |
+
name: accuracy
|
136 |
+
source:
|
137 |
+
url: https://www.placeholderurl.com
|
138 |
+
name: Open LLM Leaderboard
|
139 |
+
- task:
|
140 |
+
name: Text Generation
|
141 |
+
type: text-generation
|
142 |
+
dataset:
|
143 |
+
name: GSM8k (5-shot)
|
144 |
+
type: gsm8k
|
145 |
+
config: main
|
146 |
+
split: test
|
147 |
+
args:
|
148 |
+
num_few_shot: 5
|
149 |
+
metrics:
|
150 |
+
- type: accuracy
|
151 |
+
value: null
|
152 |
+
name: accuracy
|
153 |
+
source:
|
154 |
+
url: https://www.placeholderurl.com
|
155 |
+
name: Open LLM Leaderboard
|
156 |
+
base_model: Replete-AI/Llama3-8B-Instruct-Replete-Adapted
|
157 |
+
pipeline_tag: text-generation
|
158 |
+
---
|
159 |
+
|
160 |
+
# QuantFactory/Llama3-8B-Instruct-Replete-Adapted-GGUF
|
161 |
+
This is quantized version of [Replete-AI/Llama3-8B-Instruct-Replete-Adapted](https://huggingface.co/Replete-AI/Llama3-8B-Instruct-Replete-Adapted) created using llama.cpp
|
162 |
+
|
163 |
+
# Model Description
|
164 |
+
This is the meta-llama/Meta-Llama-3-8B-Instruct model with the Replete-AI/Replete-Coder-Llama3-8B adapter applied on top of it.
|
165 |
+
|
166 |
+
This is mostly an experinment to see how the model would perform.
|
167 |
+
|
168 |
+
Links to the oringal model and adapter are bellow:
|
169 |
+
|
170 |
+
Orginal model:
|
171 |
+
|
172 |
+
- https://huggingface.co/Replete-AI/Replete-Coder-Llama3-8B
|
173 |
+
|
174 |
+
Adapter:
|
175 |
+
|
176 |
+
- Coming soon
|
177 |
+
|
178 |
+
_________________________________________________________________________________________________________
|
179 |
+
# Replete-Coder-llama3-8b
|
180 |
+
Finetuned by: Rombodawg
|
181 |
+
### More than just a coding model!
|
182 |
+
Although Replete-Coder has amazing coding capabilities, its trained on vaste amount of non-coding data, fully cleaned and uncensored. Dont just use it for coding, use it for all your needs! We are truly trying to make the GPT killer!
|
183 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/-0dERC793D9XeFsJ9uHbx.png)
|
184 |
+
|
185 |
+
Thank you to TensorDock for sponsoring Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b
|
186 |
+
you can check out their website for cloud compute rental below.
|
187 |
+
- https://tensordock.com
|
188 |
+
__________________________________________________________________________________________________
|
189 |
+
Replete-Coder-llama3-8b is a general purpose model that is specially trained in coding in over 100 coding languages. The data used to train the model contains 25% non-code instruction data and 75% coding instruction data totaling up to 3.9 million lines, roughly 1 billion tokens, or 7.27gb of instruct data. The data used to train this model was 100% uncensored, then fully deduplicated, before training happened.
|
190 |
+
|
191 |
+
The Replete-Coder models (including Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b) feature the following:
|
192 |
+
|
193 |
+
- Advanced coding capabilities in over 100 coding languages
|
194 |
+
- Advanced code translation (between languages)
|
195 |
+
- Security and vulnerability prevention related coding capabilities
|
196 |
+
- General purpose use
|
197 |
+
- Uncensored use
|
198 |
+
- Function calling
|
199 |
+
- Advanced math use
|
200 |
+
- Use on low end (8b) and mobile (1.5b) platforms
|
201 |
+
|
202 |
+
Notice: Replete-Coder series of models are fine-tuned on a context window of 8192 tokens. Performance past this context window is not guaranteed.
|
203 |
+
|
204 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/C-zxpY5n8KuzQeocmhk0g.png)
|
205 |
+
__________________________________________________________________________________________________
|
206 |
+
You can find the 25% non-coding instruction below:
|
207 |
+
|
208 |
+
- https://huggingface.co/datasets/Replete-AI/OpenHermes-2.5-Uncensored
|
209 |
+
|
210 |
+
And the 75% coding specific instruction data below:
|
211 |
+
|
212 |
+
- https://huggingface.co/datasets/Replete-AI/code_bagel
|
213 |
+
|
214 |
+
These two datasets were combined to create the final dataset for training, which is linked below:
|
215 |
+
|
216 |
+
- https://huggingface.co/datasets/Replete-AI/code_bagel_hermes-2.5
|
217 |
+
__________________________________________________________________________________________________
|
218 |
+
## Prompt Template: Custom Alpaca
|
219 |
+
```
|
220 |
+
### System:
|
221 |
+
{}
|
222 |
+
|
223 |
+
### Instruction:
|
224 |
+
{}
|
225 |
+
|
226 |
+
### Response:
|
227 |
+
{}
|
228 |
+
```
|
229 |
+
Note: The system prompt varies in training data, but the most commonly used one is:
|
230 |
+
```
|
231 |
+
Below is an instruction that describes a task, Write a response that appropriately completes the request.
|
232 |
+
```
|
233 |
+
End token:
|
234 |
+
```
|
235 |
+
<|endoftext|>
|
236 |
+
```
|
237 |
+
__________________________________________________________________________________________________
|
238 |
+
Thank you to the community for your contributions to the Replete-AI/code_bagel_hermes-2.5 dataset. Without the participation of so many members making their datasets free and open source for any to use, this amazing AI model wouldn't be possible.
|
239 |
+
|
240 |
+
Extra special thanks to Teknium for the Open-Hermes-2.5 dataset and jondurbin for the bagel dataset and the naming idea for the code_bagel series of datasets. You can find both of their huggingface accounts linked below:
|
241 |
+
|
242 |
+
- https://huggingface.co/teknium
|
243 |
+
- https://huggingface.co/jondurbin
|
244 |
+
|
245 |
+
Another special thanks to unsloth for being the main method of training for Replete-Coder. Bellow you can find their github, as well as the special Replete-Ai secret sause (Unsloth + Qlora + Galore) colab code document that was used to train this model.
|
246 |
+
|
247 |
+
- https://github.com/unslothai/unsloth
|
248 |
+
- https://colab.research.google.com/drive/1VAaxMQJN9-78WLsPU0GWg5tEkasXoTP9?usp=sharing
|