rAIfle commited on
Commit
d2aef4d
1 Parent(s): bc04d5e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -0
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - conversational
5
+ - mixtral
6
+ - merge
7
+ - mergekit
8
+ ---
9
+
10
+
11
+ ```
12
+ e88 88e d8
13
+ d888 888b 8888 8888 ,"Y88b 888 8e d88
14
+ C8888 8888D 8888 8888 "8" 888 888 88b d88888
15
+ Y888 888P Y888 888P ,ee 888 888 888 888
16
+ "88 88" "88 88" "88 888 888 888 888
17
+ b
18
+ 8b,
19
+
20
+ e88'Y88 d8 888
21
+ d888 'Y ,"Y88b 888,8, d88 ,e e, 888
22
+ C8888 "8" 888 888 " d88888 d88 88b 888
23
+ Y888 ,d ,ee 888 888 888 888 , 888
24
+ "88,d88 "88 888 888 888 "YeeP" 888
25
+
26
+ PROUDLY PRESENTS
27
+ ```
28
+ # TeTO-MS-8x7b-exl2-rpcal
29
+
30
+ Quantized using 200 samples of 8192 tokens from an RP-oriented [PIPPA](https://huggingface.co/datasets/royallab/PIPPA-cleaned) dataset.
31
+
32
+ Branches:
33
+ - `main` -- `measurement.json`
34
+ - `4.5b6h` -- 4.5bpw, 6bit lm_head
35
+ - `4b6h` -- 4bpw, 6bit lm_head
36
+ - `3.5b6h` -- 3.5bpw, 6bit lm_head
37
+ - `2.5b6h` -- 2.5bpw, 6bit lm_head
38
+
39
+ Original model link: (reuploaded, original source got taken down) [InferenceIllusionist/TeTO-MS-8x7b](https://huggingface.co/InferenceIllusionist/TeTO-MS-8x7b)
40
+
41
+ Original model README below.
42
+
43
+ -----
44
+
45
+ <img src="https://files.catbox.moe/zdxyzv.png" width="400"/>
46
+
47
+ ## TeTO-MS-8x7b
48
+
49
+ <u><b>Te</b></u>soro + <u><b>T</b></u>yphon + <u><b>O</b></u>penGPT
50
+
51
+ Presenting a Model Stock experiment combining the unique strengths from the following 8x7b Mixtral models:
52
+ * Tess-2.0-Mixtral-8x7B-v0.2 / [migtissera](https://huggingface.co/migtissera) / General Purpose
53
+ * Typhon-Mixtral-v1 / [Sao10K](https://huggingface.co/Sao10K) / Creative & Story Completion
54
+ * Open_Gpt4_8x7B_v0.2 / [rombodawg](https://huggingface.co/rombodawg) / Conversational
55
+
56
+ Weighted (iMat) GGUFS: https://huggingface.co/Quant-Cartel/TeTO-MS-8x7b-iMat-GGUF
57
+
58
+ # Recommended Template
59
+ * Basic: Alpaca Format
60
+ * Advanced: See context/instruct/sampler settings in [our new Recommended Settings repo](https://huggingface.co/Quant-Cartel/Recommended-Settings/tree/main/Teto-MS-8x7b).
61
+ * Huge shout out to [rAIfle](https://huggingface.co/rAIfle) for his original work on the Wizard 8x22b templates which were modified for this model.
62
+
63
+ <H2>Methodology</H2>
64
+
65
+ > [I]nnovative layer-wise weight averaging technique surpasses state-of-the-art model methods such as Model Soup, utilizing only two fine-tuned models. This strategy can be aptly coined Model Stock, highlighting its reliance on selecting a minimal number of models to draw a more optimized-averaged model
66
+ <i> (From [arXiv:2403.19522](https://arxiv.org/pdf/2403.19522))</i>
67
+
68
+
69
+ * Methodology and merging process was based on the following paper - [Model Stock: All we need is just a few fine-tuned models](https://arxiv.org/abs/2403.19522)
70
+ * Initial model selection was based on top performing models of Mixtral architecture covering a variety of use cases and skills
71
+ * Base model (Mixtral Instruct 8x7b v0.1) was chosen after outperforming two other potential base models in terms of MMLU benchmark performance.
72
+
73
+ # Output
74
+
75
+ <img src="https://files.catbox.moe/bw97yg.PNG" width="400"/>
76
+
77
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
78
+
79
+ ## Merge Details
80
+ ### Merge Method
81
+
82
+ This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using Mixtral-8x7B-v0.1-Instruct as a base.
83
+
84
+ ### Models Merged
85
+
86
+ The following models were included in the merge:
87
+ * migtissera_Tess-2.0-Mixtral-8x7B-v0.2
88
+ * rombodawg_Open_Gpt4_8x7B_v0.2
89
+ * Sao10K_Typhon-Mixtral-v1
90
+
91
+ ### Configuration
92
+
93
+ The following YAML configuration was used to produce this model:
94
+
95
+ ```yaml
96
+ models:
97
+ - model: models/migtissera_Tess-2.0-Mixtral-8x7B-v0.2
98
+ - model: models/Sao10K_Typhon-Mixtral-v1
99
+ - model: models/rombodawg_Open_Gpt4_8x7B_v0.2
100
+ merge_method: model_stock
101
+ base_model: models/Mixtral-8x7B-v0.1-Instruct
102
+ dtype: float16
103
+ ```
104
+
105
+
106
+ ## Appendix - Llama.cpp MMLU Benchmark Results*
107
+
108
+ <i>These results were calculated via perplexity.exe from llama.cpp using the following params:</i>
109
+
110
+ `.\perplexity -m .\models\TeTO-8x7b-MS-v0.03\TeTO-MS-8x7b-Q6_K.gguf -bf .\evaluations\mmlu-test.bin --multiple-choice -c 8192 -t 23 -ngl 200`
111
+
112
+
113
+ ```
114
+ * V0.01 (4 model / Mixtral Base):
115
+ Final result: 43.3049 +/- 0.4196
116
+ Random chance: 25.0000 +/- 0.3667
117
+
118
+
119
+ * V0.02 (3 model / Tess Mixtral Base):
120
+ Final result: 43.8356 +/- 0.4202
121
+ Random chance: 25.0000 +/- 0.3667
122
+
123
+
124
+ * V0.03 (4 model / Mixtral Instruct Base):
125
+ Final result: 45.7004 +/- 0.4219
126
+ Random chance: 25.0000 +/- 0.3667
127
+ ```
128
+
129
+ *Please be advised metrics above are not representative of final HF benchmark scores for reasons given [here](https://github.com/ggerganov/llama.cpp/pull/5047)