romeokienzler commited on
Commit
0aa54c1
1 Parent(s): 9f96158

Update config.yaml

Browse files
Files changed (1) hide show
  1. config.yaml +14 -106
config.yaml CHANGED
@@ -1,110 +1,18 @@
1
- data:
2
- type: merra2
3
-
4
- # Input variables definition
5
- input_surface_vars:
6
- - EFLUX
7
- - GWETROOT
8
- - HFLUX
9
- - LAI
10
- - LWGAB # surface absorbed longwave radiation
11
- - LWGEM # longwave flux emitted from surface
12
- - LWTUP # upwelling longwave flux at toa
13
- - PS # surface pressure
14
- - QV2M # 2-meter specific humidity
15
- - SLP # sea level pressure
16
- - SWGNT # surface net downward shortwave flux
17
- - SWTNT # toa net downward shortwave flux
18
- - T2M # near surface temperature
19
- - TQI # total precipitable ice water
20
- - TQL # total precipitable liquid water
21
- - TQV # total precipitable water vapor
22
- - TS # surface skin temperature
23
- - U10M # 10m eastward wind
24
- - V10M # 10m northward wind
25
- - Z0M # surface roughness
26
- input_static_surface_vars: [FRACI, FRLAND, FROCEAN, PHIS]
27
- input_vertical_vars:
28
- - CLOUD # cloud feraction for radiation
29
- - H # geopotential/ mid layer heights
30
- - OMEGA # vertical pressure velocity
31
- - PL # mid level pressure
32
- - QI # mass fraction of clous ice water
33
- - QL # mass fraction of cloud liquid water
34
- - QV # specific humidity
35
- - T # tempertaure
36
- - U # eastward wind
37
- - V # northward wind
38
- # (model level/ml ~ pressure level/hPa)
39
- # 52ml ~ 562.5hPa, 56ml ~ 700hPa, 63 ml ~ 850hPa
40
- input_levels: [34.0, 39.0, 41.0, 43.0, 44.0, 45.0, 48.0, 53.0, 56.0, 63.0, 68.0, 72.0]
41
- ## remove: n_input_timestamps: 1
42
- # Output variables definition
43
- output_vars:
44
- - T2M # near surface temperature
45
-
46
- n_input_timestamps: 2
47
-
48
- # Data transformations
49
- # Initial crop before any other processing
50
- crop_lat: [0, 1]
51
- # crop_lon: [0, 0]
52
- # coarsening of target -- applied after crop
53
- input_size_lat: 60 # 6x coarsening
54
- input_size_lon: 96 # 6x coarsening
55
- apply_smoothen: True
56
-
57
- model:
58
-
59
- # Platform independent config
60
- num_static_channels: 7
61
  embed_dim: 2560
62
- token_size:
63
- - 1
64
- - 1
65
  n_blocks_encoder: 12
 
66
  mlp_multiplier: 4
67
  n_heads: 16
68
- dropout_rate: 0.0
69
- drop_path: 0.05
70
-
71
- # Accepted values: temporal, climate, none
72
- residual: climate
73
-
74
- residual_connection: True
75
- encoder_shift: False
76
-
77
- downscaling_patch_size: [2, 2]
78
- downscaling_embed_dim: 256
79
- encoder_decoder_type: 'conv' # ['conv', 'transformer']
80
- encoder_decoder_upsampling_mode: pixel_shuffle # ['nearest', 'bilinear', 'pixel_shuffle', 'conv_transpose']
81
- encoder_decoder_kernel_size_per_stage: [[3], [3]] # Optional, default = 3 for conv_tanspose [[3], [2]]
82
- encoder_decoder_scale_per_stage: [[2], [3]] # First list determines before/after backbone
83
- encoder_decoder_conv_channels: 128
84
-
85
-
86
-
87
- job_id: inference-test
88
- batch_size: 1
89
- num_epochs: 400
90
- dl_num_workers: 2
91
- dl_prefetch_size: 1
92
- learning_rate: 0.0001
93
- limit_steps_train: 250
94
- limit_steps_valid: 25
95
- min_lr: 0.00001
96
- max_lr: 0.0002
97
- warm_up_steps: 0
98
- mask_unit_size:
99
- - 15
100
- - 16
101
- mask_ratio_inputs: 0.0
102
- mask_ratio_targets: 0.0
103
- max_batch_size: 16
104
-
105
- path_experiment: experiment
106
-
107
- backbone_freeze: True
108
- backbone_prefix: encoder.
109
- finetune_w_static: True
110
- strict_matching: true
 
1
+ params:
2
+ input_size_time: 2
3
+ patch_size_px: [2, 2]
4
+ mask_unit_size_px: [30, 32]
5
+ n_lats_px: 360
6
+ n_lons_px: 576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  embed_dim: 2560
 
 
 
8
  n_blocks_encoder: 12
9
+ n_blocks_decoder: 2
10
  mlp_multiplier: 4
11
  n_heads: 16
12
+ dropout: 0.0
13
+ drop_path: 0.0
14
+ parameter_dropout: 0.0
15
+ residual: True # Or False, depending on your needs
16
+ masking_mode: 'random' # Or 'fixed'
17
+ decoder_shifting: True # Or False
18
+ positional_encoding: True # Or False