--- license: apache-2.0 language: - en tags: - Pytorch - gravity wave - Weather & Climate - Foundation model datasets: - Prithvi-WxC/Gravity_wave_Parameterization base_model: - Prithvi-WxC/prithvi.wxc.2300m.v1 --- This repository contains pretrained model for Gravity Wave Flux Parametrization downstream task. Gravity Wave ### Model The pretrained [Prithvi WxC](https://huggingface.co/Prithvi-WxC/prithvi.wxc.2300m.v1) parameter model is finetuned to predict momentum fluxes from the [Gravity Wave Parameterization dataset](https://huggingface.co/datasets/Prithvi-WxC/Gravity_wave_Parameterization). Input: 491 (3 + 4x122) channels. 1. latitude (1) 2. longitude (1) 3. surface elevation (1) 4. zonal winds \\(u\\) (122) 5. meridional winds \\(v\\) (122) 6. 6. temperature \\(T\\) (122) 7. pressure \\(P\\) (122) Output: 366 (3x122) channels. 1. potential temperature \\(\theta\\) (122) 2. zonal flux of vertical momentum \\(u'\omega'\\) (122) 3. meridional flux of vertical momentum \\(v'\omega'\\) (122) ### Code Code for fine-tuning is available through [Github](https://github.com/NASA-IMPACT/gravity-wave-finetuning). ### Results Gravity Wave For the Andes (mountain waves) and the Southern Ocean (non-mountain waves), the fine-tuned model achieves correlation coefficients of 0.99 and 0.97, respectively, when compared to the observed fluxes. ### Inference and demo The github repo includes an inference script that allows to run the [gravity_wave_model](https://huggingface.co/Prithvi-WxC/Gravity_wave_Parameterization/blob/main/magnet-flux-uvtp122-epoch-99-loss-0.1022.pt) model for inference on [sample dataset](https://huggingface.co/datasets/Prithvi-WxC/Gravity_wave_Parameterization/blob/main/wxc_input_u_v_t_p_output_theta_uw_vw_era5_training_data_hourly_2015_constant_mu_sigma_scaling05.nc). ## Citation If you use this work, consider citing our paper ``` @article{gupta2024machine, title={Machine learning global simulation of nonlocal gravity wave propagation}, author={Gupta, Aman and Sheshadri, Aditi and Roy, Sujit and Gaur, Vishal and Maskey, Manil and Ramachandran, Rahul}, journal={arXiv preprint arXiv:2406.14775}, year={2024} } ```