PrateekJ17
commited on
Commit
•
871f0bc
1
Parent(s):
22ebca0
Initial Files
Browse files
bigram.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
# hyperparameters
|
6 |
+
batch_size = 32 # how many independent sequences will we process in parallel?
|
7 |
+
block_size = 8 # what is the maximum context length for predictions?
|
8 |
+
max_iters = 3000
|
9 |
+
eval_interval = 300
|
10 |
+
learning_rate = 1e-2
|
11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
eval_iters = 200
|
13 |
+
# ------------
|
14 |
+
|
15 |
+
torch.manual_seed(1337)
|
16 |
+
with open('input.txt', 'r', encoding='utf-8') as f:
|
17 |
+
text = f.read()
|
18 |
+
|
19 |
+
# here are all the unique characters that occur in this text
|
20 |
+
chars = sorted(list(set(text)))
|
21 |
+
vocab_size = len(chars)
|
22 |
+
# create a mapping from characters to integers
|
23 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
24 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
25 |
+
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
26 |
+
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
27 |
+
|
28 |
+
# Train and test splits
|
29 |
+
data = torch.tensor(encode(text), dtype=torch.long)
|
30 |
+
n = int(0.9*len(data)) # first 90% will be train, rest val
|
31 |
+
train_data = data[:n]
|
32 |
+
val_data = data[n:]
|
33 |
+
|
34 |
+
# data loading
|
35 |
+
def get_batch(split):
|
36 |
+
# generate a small batch of data of inputs x and targets y
|
37 |
+
data = train_data if split == 'train' else val_data
|
38 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
39 |
+
x = torch.stack([data[i:i+block_size] for i in ix])
|
40 |
+
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
|
41 |
+
x, y = x.to(device), y.to(device)
|
42 |
+
return x, y
|
43 |
+
|
44 |
+
@torch.no_grad()
|
45 |
+
def estimate_loss():
|
46 |
+
out = {}
|
47 |
+
model.eval()
|
48 |
+
for split in ['train', 'val']:
|
49 |
+
losses = torch.zeros(eval_iters)
|
50 |
+
for k in range(eval_iters):
|
51 |
+
X, Y = get_batch(split)
|
52 |
+
logits, loss = model(X, Y)
|
53 |
+
losses[k] = loss.item()
|
54 |
+
out[split] = losses.mean()
|
55 |
+
model.train()
|
56 |
+
return out
|
57 |
+
|
58 |
+
# super simple bigram model
|
59 |
+
class BigramLanguageModel(nn.Module):
|
60 |
+
|
61 |
+
def __init__(self, vocab_size):
|
62 |
+
super().__init__()
|
63 |
+
# each token directly reads off the logits for the next token from a lookup table
|
64 |
+
self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)
|
65 |
+
|
66 |
+
def forward(self, idx, targets=None):
|
67 |
+
|
68 |
+
# idx and targets are both (B,T) tensor of integers
|
69 |
+
logits = self.token_embedding_table(idx) # (B,T,C)
|
70 |
+
|
71 |
+
if targets is None:
|
72 |
+
loss = None
|
73 |
+
else:
|
74 |
+
B, T, C = logits.shape
|
75 |
+
logits = logits.view(B*T, C)
|
76 |
+
targets = targets.view(B*T)
|
77 |
+
loss = F.cross_entropy(logits, targets)
|
78 |
+
|
79 |
+
return logits, loss
|
80 |
+
|
81 |
+
def generate(self, idx, max_new_tokens):
|
82 |
+
# idx is (B, T) array of indices in the current context
|
83 |
+
for _ in range(max_new_tokens):
|
84 |
+
# get the predictions
|
85 |
+
logits, loss = self(idx)
|
86 |
+
# focus only on the last time step
|
87 |
+
logits = logits[:, -1, :] # becomes (B, C)
|
88 |
+
# apply softmax to get probabilities
|
89 |
+
probs = F.softmax(logits, dim=-1) # (B, C)
|
90 |
+
# sample from the distribution
|
91 |
+
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
|
92 |
+
# append sampled index to the running sequence
|
93 |
+
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
|
94 |
+
return idx
|
95 |
+
|
96 |
+
model = BigramLanguageModel(vocab_size)
|
97 |
+
m = model.to(device)
|
98 |
+
|
99 |
+
# create a PyTorch optimizer
|
100 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
101 |
+
|
102 |
+
for iter in range(max_iters):
|
103 |
+
|
104 |
+
# every once in a while evaluate the loss on train and val sets
|
105 |
+
if iter % eval_interval == 0:
|
106 |
+
losses = estimate_loss()
|
107 |
+
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
108 |
+
|
109 |
+
# sample a batch of data
|
110 |
+
xb, yb = get_batch('train')
|
111 |
+
|
112 |
+
# evaluate the loss
|
113 |
+
logits, loss = model(xb, yb)
|
114 |
+
optimizer.zero_grad(set_to_none=True)
|
115 |
+
loss.backward()
|
116 |
+
optimizer.step()
|
117 |
+
|
118 |
+
# generate from the model
|
119 |
+
context = torch.zeros((1, 1), dtype=torch.long, device=device)
|
120 |
+
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
|
gpt.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
# hyperparameters
|
6 |
+
batch_size = 64 # how many independent sequences will we process in parallel?
|
7 |
+
block_size = 256 # what is the maximum context length for predictions?
|
8 |
+
max_iters = 5000
|
9 |
+
eval_interval = 500
|
10 |
+
learning_rate = 3e-4
|
11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
eval_iters = 200
|
13 |
+
n_embd = 384
|
14 |
+
n_head = 6
|
15 |
+
n_layer = 6
|
16 |
+
dropout = 0.2
|
17 |
+
# ------------
|
18 |
+
|
19 |
+
torch.manual_seed(1337)
|
20 |
+
|
21 |
+
with open('input.txt', 'r', encoding='utf-8') as f:
|
22 |
+
text = f.read()
|
23 |
+
|
24 |
+
# here are all the unique characters that occur in this text
|
25 |
+
chars = sorted(list(set(text)))
|
26 |
+
vocab_size = len(chars)
|
27 |
+
# create a mapping from characters to integers
|
28 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
29 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
30 |
+
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
31 |
+
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
32 |
+
|
33 |
+
# Train and test splits
|
34 |
+
data = torch.tensor(encode(text), dtype=torch.long)
|
35 |
+
n = int(0.9*len(data)) # first 90% will be train, rest val
|
36 |
+
train_data = data[:n]
|
37 |
+
val_data = data[n:]
|
38 |
+
|
39 |
+
# data loading
|
40 |
+
def get_batch(split):
|
41 |
+
# generate a small batch of data of inputs x and targets y
|
42 |
+
data = train_data if split == 'train' else val_data
|
43 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
44 |
+
x = torch.stack([data[i:i+block_size] for i in ix])
|
45 |
+
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
|
46 |
+
x, y = x.to(device), y.to(device)
|
47 |
+
return x, y
|
48 |
+
|
49 |
+
@torch.no_grad()
|
50 |
+
def estimate_loss():
|
51 |
+
out = {}
|
52 |
+
model.eval()
|
53 |
+
for split in ['train', 'val']:
|
54 |
+
losses = torch.zeros(eval_iters)
|
55 |
+
for k in range(eval_iters):
|
56 |
+
X, Y = get_batch(split)
|
57 |
+
logits, loss = model(X, Y)
|
58 |
+
losses[k] = loss.item()
|
59 |
+
out[split] = losses.mean()
|
60 |
+
model.train()
|
61 |
+
return out
|
62 |
+
|
63 |
+
class Head(nn.Module):
|
64 |
+
""" one head of self-attention """
|
65 |
+
|
66 |
+
def __init__(self, head_size):
|
67 |
+
super().__init__()
|
68 |
+
self.key = nn.Linear(n_embd, head_size, bias=False)
|
69 |
+
self.query = nn.Linear(n_embd, head_size, bias=False)
|
70 |
+
self.value = nn.Linear(n_embd, head_size, bias=False)
|
71 |
+
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
72 |
+
|
73 |
+
self.dropout = nn.Dropout(dropout)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
# input of size (batch, time-step, channels)
|
77 |
+
# output of size (batch, time-step, head size)
|
78 |
+
B,T,C = x.shape
|
79 |
+
k = self.key(x) # (B,T,hs)
|
80 |
+
q = self.query(x) # (B,T,hs)
|
81 |
+
# compute attention scores ("affinities")
|
82 |
+
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
|
83 |
+
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
|
84 |
+
wei = F.softmax(wei, dim=-1) # (B, T, T)
|
85 |
+
wei = self.dropout(wei)
|
86 |
+
# perform the weighted aggregation of the values
|
87 |
+
v = self.value(x) # (B,T,hs)
|
88 |
+
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
|
89 |
+
return out
|
90 |
+
|
91 |
+
class MultiHeadAttention(nn.Module):
|
92 |
+
""" multiple heads of self-attention in parallel """
|
93 |
+
|
94 |
+
def __init__(self, num_heads, head_size):
|
95 |
+
super().__init__()
|
96 |
+
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
97 |
+
self.proj = nn.Linear(head_size * num_heads, n_embd)
|
98 |
+
self.dropout = nn.Dropout(dropout)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
out = torch.cat([h(x) for h in self.heads], dim=-1)
|
102 |
+
out = self.dropout(self.proj(out))
|
103 |
+
return out
|
104 |
+
|
105 |
+
class FeedFoward(nn.Module):
|
106 |
+
""" a simple linear layer followed by a non-linearity """
|
107 |
+
|
108 |
+
def __init__(self, n_embd):
|
109 |
+
super().__init__()
|
110 |
+
self.net = nn.Sequential(
|
111 |
+
nn.Linear(n_embd, 4 * n_embd),
|
112 |
+
nn.ReLU(),
|
113 |
+
nn.Linear(4 * n_embd, n_embd),
|
114 |
+
nn.Dropout(dropout),
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
return self.net(x)
|
119 |
+
|
120 |
+
class Block(nn.Module):
|
121 |
+
""" Transformer block: communication followed by computation """
|
122 |
+
|
123 |
+
def __init__(self, n_embd, n_head):
|
124 |
+
# n_embd: embedding dimension, n_head: the number of heads we'd like
|
125 |
+
super().__init__()
|
126 |
+
head_size = n_embd // n_head
|
127 |
+
self.sa = MultiHeadAttention(n_head, head_size)
|
128 |
+
self.ffwd = FeedFoward(n_embd)
|
129 |
+
self.ln1 = nn.LayerNorm(n_embd)
|
130 |
+
self.ln2 = nn.LayerNorm(n_embd)
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
x = x + self.sa(self.ln1(x))
|
134 |
+
x = x + self.ffwd(self.ln2(x))
|
135 |
+
return x
|
136 |
+
|
137 |
+
class GPTLanguageModel(nn.Module):
|
138 |
+
|
139 |
+
def __init__(self):
|
140 |
+
super().__init__()
|
141 |
+
# each token directly reads off the logits for the next token from a lookup table
|
142 |
+
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
|
143 |
+
self.position_embedding_table = nn.Embedding(block_size, n_embd)
|
144 |
+
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
|
145 |
+
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
|
146 |
+
self.lm_head = nn.Linear(n_embd, vocab_size)
|
147 |
+
|
148 |
+
# better init, not covered in the original GPT video, but important, will cover in followup video
|
149 |
+
self.apply(self._init_weights)
|
150 |
+
|
151 |
+
def _init_weights(self, module):
|
152 |
+
if isinstance(module, nn.Linear):
|
153 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
154 |
+
if module.bias is not None:
|
155 |
+
torch.nn.init.zeros_(module.bias)
|
156 |
+
elif isinstance(module, nn.Embedding):
|
157 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
158 |
+
|
159 |
+
def forward(self, idx, targets=None):
|
160 |
+
B, T = idx.shape
|
161 |
+
|
162 |
+
# idx and targets are both (B,T) tensor of integers
|
163 |
+
tok_emb = self.token_embedding_table(idx) # (B,T,C)
|
164 |
+
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
|
165 |
+
x = tok_emb + pos_emb # (B,T,C)
|
166 |
+
x = self.blocks(x) # (B,T,C)
|
167 |
+
x = self.ln_f(x) # (B,T,C)
|
168 |
+
logits = self.lm_head(x) # (B,T,vocab_size)
|
169 |
+
|
170 |
+
if targets is None:
|
171 |
+
loss = None
|
172 |
+
else:
|
173 |
+
B, T, C = logits.shape
|
174 |
+
logits = logits.view(B*T, C)
|
175 |
+
targets = targets.view(B*T)
|
176 |
+
loss = F.cross_entropy(logits, targets)
|
177 |
+
|
178 |
+
return logits, loss
|
179 |
+
|
180 |
+
def generate(self, idx, max_new_tokens):
|
181 |
+
# idx is (B, T) array of indices in the current context
|
182 |
+
for _ in range(max_new_tokens):
|
183 |
+
# crop idx to the last block_size tokens
|
184 |
+
idx_cond = idx[:, -block_size:]
|
185 |
+
# get the predictions
|
186 |
+
logits, loss = self(idx_cond)
|
187 |
+
# focus only on the last time step
|
188 |
+
logits = logits[:, -1, :] # becomes (B, C)
|
189 |
+
# apply softmax to get probabilities
|
190 |
+
probs = F.softmax(logits, dim=-1) # (B, C)
|
191 |
+
# sample from the distribution
|
192 |
+
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
|
193 |
+
# append sampled index to the running sequence
|
194 |
+
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
|
195 |
+
return idx
|
196 |
+
|
197 |
+
model = GPTLanguageModel()
|
198 |
+
m = model.to(device)
|
199 |
+
# print the number of parameters in the model
|
200 |
+
print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
|
201 |
+
|
202 |
+
# create a PyTorch optimizer
|
203 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
204 |
+
|
205 |
+
for iter in range(max_iters):
|
206 |
+
|
207 |
+
# every once in a while evaluate the loss on train and val sets
|
208 |
+
if iter % eval_interval == 0 or iter == max_iters - 1:
|
209 |
+
losses = estimate_loss()
|
210 |
+
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
211 |
+
|
212 |
+
# sample a batch of data
|
213 |
+
xb, yb = get_batch('train')
|
214 |
+
|
215 |
+
# evaluate the loss
|
216 |
+
logits, loss = model(xb, yb)
|
217 |
+
optimizer.zero_grad(set_to_none=True)
|
218 |
+
loss.backward()
|
219 |
+
optimizer.step()
|
220 |
+
|
221 |
+
# generate from the model
|
222 |
+
context = torch.zeros((1, 1), dtype=torch.long, device=device)
|
223 |
+
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
|
224 |
+
#open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
|
input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|