ppo-LunarLander-v2 / config.json
PiaoYang's picture
Upload PPO LunarLander-v2 trained agent
bbd197d
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa535846a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa535846b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa535846b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa535846c20>", "_build": "<function ActorCriticPolicy._build at 0x7fa535846cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa535846d40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa535846dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa535846e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa535846ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa535846f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa535847010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5358470a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa53583b380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685530934694831122, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJ7ctb7i3CE/f0sdvvRx1L57yMu+QLnQPAAAAAAAAAAAph2kPUfznj9dNko+/tPVvgno+T0iLHE9AAAAAAAAAAAmX9I9CpGjP9ZmuD7mbPW+rt41Pn/XBj4AAAAAAAAAAAAAVbnq+g0+1WapvB0vOb7acnu9kP9mvAAAAAAAAAAAVil6vkTeKb3ptqE6jcZyOdj2kz6t/9+5AACAPwAAgD8myP89CNj6PtJBnb7Rd6K+hgtgu5hOgL0AAAAAAAAAAHO8vL1v1mM+OTeXPctscb5EwWy8dlOWPQAAAAAAAAAAzTk4vdf+BLua8y08RyifPAwRDTzb0Ii9AACAPwAAgD9m1AK9+W6lP9XuUL4bsOC+DDuGvRAh8r0AAAAAAAAAAA1atb1ZMgQ+OFQ8vU0LRL65Euu9Nq5AvAAAAAAAAAAAM0MJO6PrLD0GVLO9499XvloCYb1OnoO8AAAAAAAAAACABQu+CXyZP7YD9L25Dc++zxExvlPsgjwAAAAAAAAAADPXDD6N5xE/86dgvgf8rL4ZDXa9eQ0WvgAAAAAAAAAAM01/vbsOmj8GQaK+rtD4vsFDCb62dn++AAAAAAAAAABAVfC9UljHuX5XBjYQluexvp30OpNiKLUAAIA/AACAP1NCiD46AWA/Eee7PT6ow75YZqg+cvQrvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCH9vn8sMCMAWyUTQsBjAF0lEdAlw2P7SApa3V9lChoBkdAcM7c94eLemgHTSMBaAhHQJcO2ajN6gN1fZQoaAZHQHDYwtWdVedoB00fAWgIR0CXD9lXA/LUdX2UKGgGR0BwKBqveP7vaAdNIQFoCEdAlxAj9KmKqHV9lChoBkdAcdGTQ3PzF2gHTWIBaAhHQJcQ3Tw2ETR1fZQoaAZHQHEs3531SO1oB008AWgIR0CXEZJhvze5dX2UKGgGR0Bywdvfj0cwaAdNFgFoCEdAlxH7cj7hvXV9lChoBkdAclDt7rs0HmgHTSgBaAhHQJcTUl6Z6Ut1fZQoaAZHQHG6vM4cWCVoB01AAWgIR0CXFKA3DNyHdX2UKGgGR0Bw2/p3X7LuaAdNKQFoCEdAlxXdpZfUnXV9lChoBkdAbrjvBJqZdGgHTSwBaAhHQJcWbG0eEIx1fZQoaAZHQEQtq+JxecBoB0vEaAhHQJcWfdcjZ+R1fZQoaAZHQG3ycD8tPHloB00bAWgIR0CXFqQQcxTLdX2UKGgGR0BxwMjs2NvPaAdNMAFoCEdAlxbTm4iHI3V9lChoBkdAX6sxWT5ft2gHTegDaAhHQJcXIsYl6Z91fZQoaAZHQHHzGKhtcfNoB00XAWgIR0CXF9uJk5IZdX2UKGgGR0BveUidJ8OTaAdNEAFoCEdAlxiPHcUM5XV9lChoBkdAb9fyCFsYVWgHTXsBaAhHQJcZJUCJXQt1fZQoaAZHQG4kEKmbb11oB00DAWgIR0CXGcp48loldX2UKGgGR0Bwtxp48lolaAdNPAFoCEdAlxv3p4bCJ3V9lChoBkdActjadMCcPWgHTWkBaAhHQJccLUe+23N1fZQoaAZHQHFK4IrvsqtoB00qAWgIR0CXHM31SOzZdX2UKGgGR0Bx3CeQMhHLaAdL8WgIR0CXHdFPSDywdX2UKGgGR0BwseqMm4RVaAdNJAFoCEdAlx3rbYbsGHV9lChoBkdAYQJ6SDAaemgHTegDaAhHQJcfFWluWKN1fZQoaAZHQHG/22kSElFoB00MAWgIR0CXH3L0z0pWdX2UKGgGR0Bx42BnSOR1aAdNIgFoCEdAlx+Gtp22X3V9lChoBkdAciEBP9DQaGgHTTcBaAhHQJcft6hQFcJ1fZQoaAZHQHGg070WdmRoB00eAWgIR0CXH7b0OEuhdX2UKGgGR0Btpmjbi6xxaAdNJwFoCEdAlx/SWNWEK3V9lChoBkdAcR1VkMCtBGgHTRQBaAhHQJcgVcOby6N1fZQoaAZHQEx0Zy+6Ae9oB0vnaAhHQJcg61v2oNx1fZQoaAZHQG+pqOtGNJhoB00rAWgIR0CXIY8x9G7SdX2UKGgGR0ByYqCNCJGfaAdNSQFoCEdAlyL9X5nDi3V9lChoBkdAcW9t/4Irv2gHTSkBaAhHQJck/nOjZct1fZQoaAZHQG/3AA6uGK1oB00uAWgIR0CXJWZIQOFydX2UKGgGR0BxmXjGT9sKaAdNIQFoCEdAlyWlIuoP1HV9lChoBkdAbqCiB5HEuWgHTQYBaAhHQJcl3gEU0vZ1fZQoaAZHQHD2dGRV6u5oB00OAWgIR0CXJgZ88cMmdX2UKGgGR0Bxi6nGbTc7aAdNDAFoCEdAlycQuuieunV9lChoBkdAcVIQv6CUYGgHTQ8BaAhHQJcnfMvAXVN1fZQoaAZHQHE1gwsXizdoB00MAWgIR0CXJ6TxoZhsdX2UKGgGR0BvzalxffGdaAdL8WgIR0CXKDQ66reZdX2UKGgGR0BwclYxL0z1aAdNJAFoCEdAlyhZeE7GN3V9lChoBkdAcnHpM6BAfWgHTT8BaAhHQJco88eS0Sh1fZQoaAZHQHD6MPWhAW1oB006AWgIR0CXKRMrEtNBdX2UKGgGR0Bx4l1PnB+GaAdNKwFoCEdAlykvrGBFu3V9lChoBkdAcg+7NB4UvmgHTR0BaAhHQJc73rkbPyF1fZQoaAZHQGH5XeWOZLJoB03oA2gIR0CXPmbp/wy7dX2UKGgGR0Bvu1/DtPYWaAdNKQFoCEdAlz6Xb7CSBHV9lChoBkdAcIVwxnFo+WgHTQ0BaAhHQJdBh2/zreJ1fZQoaAZHQHI2xQemvW9oB00xAWgIR0CXQdbqhUR4dX2UKGgGR0BxSD6P8yeqaAdNJQFoCEdAl0HaWom5UnV9lChoBkdAcP7wB5ooNWgHTSQBaAhHQJdCYn5SFXd1fZQoaAZHQHK4fRqoIfNoB00sAWgIR0CXQnWBz3h5dX2UKGgGR0Bwnt7NSqEOaAdNFAFoCEdAl0OFZcLSeHV9lChoBkdAclcBK+SKWWgHTSoBaAhHQJdDwJ2MbWF1fZQoaAZHQG4zuBtk4FRoB00FAWgIR0CXQ+bdJrckdX2UKGgGR0BwJauhbnoxaAdNJwFoCEdAl0WheXzDoHV9lChoBkdAcLkrrxAjZGgHTS4BaAhHQJdGAGC7K7t1fZQoaAZHQHEPde+mFaloB00WAWgIR0CXRkNQj2SMdX2UKGgGR0By2sLThHbzaAdNbAFoCEdAl0a/cer+53V9lChoBkdAcQYgeA/cFmgHS/hoCEdAl0cJ8WsRx3V9lChoBkdAcBhm4iHIqGgHTRIBaAhHQJdH3ZElVtJ1fZQoaAZHQHLbizTnaFpoB02FAWgIR0CXSC38n/kvdX2UKGgGR0BVhQfp2U0OaAdL7GgIR0CXSKupCKJmdX2UKGgGR0BypF2MbWEsaAdN0AFoCEdAl0kQxvegtnV9lChoBkdATqkC/47A+WgHS9JoCEdAl0mIsAeaKHV9lChoBkdAb2TKV6eGwmgHTSsBaAhHQJdKrxnWatt1fZQoaAZHQHCFEi+tbLVoB007AWgIR0CXSzIToMa1dX2UKGgGR0BwXFaJQ+EAaAdNBgFoCEdAl0uJ5E+gUXV9lChoBkdAcMwJPIn0CmgHTRsBaAhHQJdL/WmP5pJ1fZQoaAZHQG/wxKHwgDBoB01SAWgIR0CXTEVlf7aadX2UKGgGR0BwtS7f51vEaAdNfwFoCEdAl02U2UB4lnV9lChoBkdAckpVNpM6BGgHTREBaAhHQJdNn/6wdKd1fZQoaAZHQG6e05uIhyNoB0v6aAhHQJdODyjHn2Z1fZQoaAZHQHB5+u7pV0doB00WAWgIR0CXTzL+PzWgdX2UKGgGR0Bv74iFCb+caAdNWgFoCEdAl1Ai4jKPn3V9lChoBkdAbpfvfj0cwWgHTRsBaAhHQJdQRnjABT51fZQoaAZHQG8zv2Xb/OtoB00lAWgIR0CXUN8uBczJdX2UKGgGR0BL0Y/NZ/0/aAdL3GgIR0CXUTnbItDldX2UKGgGR0ByXbf642CNaAdNGAFoCEdAl1FiswL3K3V9lChoBkdAcrQ4mTkhimgHTVYBaAhHQJdSvmxMWXV1fZQoaAZHQG+zThHbypdoB004AWgIR0CXUr74BV+7dX2UKGgGR0BwtQrVe8f3aAdNDAFoCEdAl1NZD3M6inV9lChoBkdAb/fO0LMLW2gHTQoBaAhHQJdUBUo8ZDR1fZQoaAZHQHEuqErXlKdoB001AWgIR0CXVDaouPFOdX2UKGgGR0ByqSJBPbfxaAdNRwFoCEdAl1WHfIjnm3V9lChoBkdAcRPs0HhS+GgHTSUBaAhHQJdWLTZxrBV1fZQoaAZHQHIQOtGNJe5oB00tAWgIR0CXVl9WZJCjdX2UKGgGR0ByfSTLW7OFaAdNEQFoCEdAl1ctsvZh8nV9lChoBkdAa0rGkvboKWgHTWYBaAhHQJdYnlT3qRl1fZQoaAZHQHJoa7/XGwRoB00lAWgIR0CXWMFXaJyidX2UKGgGR0BwH5Bsyi22aAdNIQFoCEdAl1oDh1klNXV9lChoBkdAcKoZUDMeOmgHTScBaAhHQJdaDVDrqt51fZQoaAZHQG/GOWrwOONoB008AWgIR0CXWldlum78dX2UKGgGR0ByIe8Zk079aAdNEwFoCEdAl1sZmI0qIHV9lChoBkdAcEM+36Q/5mgHTRgBaAhHQJdbQQqZtvZ1fZQoaAZHQHEVeLaVUuNoB00HAWgIR0CXW2b8WKuTdX2UKGgGR0BumyYsunMuaAdNdgFoCEdAl1t6+N96TnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}