Philipp-Sc
commited on
Commit
•
c5dac99
1
Parent(s):
69f49fd
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- pankajmathur/WizardLM_Orca
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
---
|
9 |
+
---
|
10 |
+
base_model: mistralai/Mistral-7B-v0.1
|
11 |
+
---
|
12 |
+
|
13 |
+
## Reverse Instruct LoRa Adapter
|
14 |
+
|
15 |
+
This LoRa Adapter is fine tuned to reverse engineer the original prompt of a given LLM output/response.
|
16 |
+
|
17 |
+
## Response Format
|
18 |
+
|
19 |
+
"[INST]\n### System:\n{system}\n### Instruction:\n{instruction}\n[/INST]\n"
|
20 |
+
|
21 |
+
(without the "")
|
22 |
+
|
23 |
+
## Prompt Template
|
24 |
+
|
25 |
+
"\n### System:\nYou craft instructions for generating the given output through reverse engineering.\n### Instruction:\nDecipher the steps used to produce the given output and articulate a refined set of instructions (System & Instruction).\n### OUTPUT:\n {output}"
|
26 |
+
|
27 |
+
(use the template without the " ")
|
28 |
+
|
29 |
+
## Training Dataset
|
30 |
+
|
31 |
+
About 21k items of the following datasets were used. (mostly coding-like tasks were removed)
|
32 |
+
|
33 |
+
```bash
|
34 |
+
wget https://raw.githubusercontent.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/main/data/alpaca_gpt4_data.json
|
35 |
+
wget https://raw.githubusercontent.com/teknium1/GPTeacher/main/Roleplay%20Supplemental/roleplay-instruct-v2.1.json
|
36 |
+
wget https://huggingface.co/datasets/pankajmathur/WizardLM_Orca/resolve/main/wizardlm_orca.json
|
37 |
+
```
|
38 |
+
|
39 |
+
## Training Procedure
|
40 |
+
|
41 |
+
```bash
|
42 |
+
CUDA_VISIBLE_DEVICES=0 WANDB_DISABLED=True python LLaMA-Factory/src/train_bash.py \
|
43 |
+
--stage sft \
|
44 |
+
--model_name_or_path model_name_or_path \
|
45 |
+
--checkpoint_dir checkpoint_dir \
|
46 |
+
--do_train \
|
47 |
+
--dataset default \
|
48 |
+
--template vanilla \
|
49 |
+
--finetuning_type lora \
|
50 |
+
--lora_target q_proj,v_proj \
|
51 |
+
--output_dir path_to_sft_checkpoint \
|
52 |
+
--overwrite_cache \
|
53 |
+
--per_device_train_batch_size 1 \
|
54 |
+
--gradient_accumulation_steps 1 \
|
55 |
+
--lr_scheduler_type cosine \
|
56 |
+
--logging_steps 10 \
|
57 |
+
--save_steps 100 \
|
58 |
+
--learning_rate 5e-5 \
|
59 |
+
--num_train_epochs 3.0 \
|
60 |
+
--plot_loss \
|
61 |
+
--fp16 \
|
62 |
+
--overwrite_output_dir \
|
63 |
+
--cutoff_len 2048 \
|
64 |
+
--quantization_bit 4
|
65 |
+
```
|
66 |
+
|
67 |
+
## Training Time
|
68 |
+
|
69 |
+
- ~30h on Kaggle's P100 GPU
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- LLaMA-Factory
|