File size: 1,731 Bytes
b91e70d 90f7986 b91e70d 96e4a03 b91e70d 96e4a03 b91e70d 96e4a03 b91e70d 96e4a03 b91e70d 96e4a03 b91e70d 0936a3d b91e70d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: openai/whisper-base
datasets:
- Oyounghyun/whisper_study_data
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: study0703
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# study0703
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1988
- Cer: 6.6313
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.004 | 9.6154 | 1000 | 0.1731 | 6.3102 |
| 0.0007 | 19.2308 | 2000 | 0.1849 | 6.3584 |
| 0.0004 | 28.8462 | 3000 | 0.1921 | 6.4226 |
| 0.0003 | 38.4615 | 4000 | 0.1968 | 6.5992 |
| 0.0002 | 48.0769 | 5000 | 0.1988 | 6.6313 |
### Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|