renillhuang commited on
Commit
8ccede2
1 Parent(s): 0d8b9ca

Update model agreement license and add github link

Browse files
Files changed (3) hide show
  1. ModelsCommunityLicenseAgreement +1 -2
  2. README.MD +335 -0
  3. README_zh.MD +336 -0
ModelsCommunityLicenseAgreement CHANGED
@@ -138,7 +138,7 @@ The Licensor reserves the right to update the Agreement from time to time.
138
  二、 许可及许可限制
139
  根据本许可协议的条款和条件,许可方特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。您可以出于非商业用途使用此许可。许可方对您使用【Orion-14B系列】模型的输出或基于【Orion-14B系列】模型得到的模型衍生品不主张任何权利,但您必须满足如下许可限制条件:
140
  1. 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建【Orion-14B系列】 模型的全部或部分衍生品。
141
- 2. 如果您计划将【Orion-14B系列】模型及模型衍生品用作商业用途,应当按照本协议提供的联络方式,事先向许可方登记并获得许可方的书面授权。请点击以下链接进行登记:https://test.orionstar.com/llm-license.html
142
  3. 您对【Orion-14B系列】模型的使用和修改(包括使用【Orion-14B系列】 模型的输出或者基于【Orion-14B系列】 模型得到的模型衍生品)不得违反任何国家的法律法规,尤其是中华人民共和国的法律法规,不得侵犯任何第三方的合法权益,包括但不限于肖像权、名誉权、隐私权等 人格权,著作权、专利权、商业秘密等知识产权,或者其他财产权益。
143
  4. 您必须向【Orion-14B系列】模型或其模型衍生品的任何第三方使用者提供【Orion-14B系列】模型的来源以及本协议的副本。
144
  5. 您修改【Orion-14B系列】 模型得到模型衍生品,必须以显著的方式说明修改的内容,且上述修改不得违反本协议的许可限制条件,也不能允许、协助或以其他方式使得第三方违反本协议中的许可限制条件。
@@ -164,4 +164,3 @@ The Licensor reserves the right to update the Agreement from time to time.
164
  1. 许可方在法律法规许可的范围内对协议条款享有最终解释权。
165
  2. 本协议的订立、效力、解释、履行、修改和终止,使用【Orion-14B系列】模型以及争议的解 决均适用中华人民共和国大陆地区(仅为本协议之目的,不包括香港、澳门和台湾)法律,并排除冲突法的适用。
166
  3. 因使用【Orion-14B系列】模型而发生的任何争议,各方应首先通过友好协商的方式加以解决。协商不成时,向许可方所在地人民法院提起诉讼。
167
-
 
138
  二、 许可及许可限制
139
  根据本许可协议的条款和条件,许可方特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。您可以出于非商业用途使用此许可。许可方对您使用【Orion-14B系列】模型的输出或基于【Orion-14B系列】模型得到的模型衍生品不主张任何权利,但您必须满足如下许可限制条件:
140
  1. 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建【Orion-14B系列】 模型的全部或部分衍生品。
141
+ 2. 如果您计划将【Orion-14B系列】模型及模型衍生品用作商业用途,应当按照本协议提供的联络方式,事先向许可方登记并获得许可方的书面授权。请点击以下链接进行登记:https://test.orionstar.com/llm-license.html。按照链接要求完成登记后即可获得商用授权。
142
  3. 您对【Orion-14B系列】模型的使用和修改(包括使用【Orion-14B系列】 模型的输出或者基于【Orion-14B系列】 模型得到的模型衍生品)不得违反任何国家的法律法规,尤其是中华人民共和国的法律法规,不得侵犯任何第三方的合法权益,包括但不限于肖像权、名誉权、隐私权等 人格权,著作权、专利权、商业秘密等知识产权,或者其他财产权益。
143
  4. 您必须向【Orion-14B系列】模型或其模型衍生品的任何第三方使用者提供【Orion-14B系列】模型的来源以及本协议的副本。
144
  5. 您修改【Orion-14B系列】 模型得到模型衍生品,必须以显著的方式说明修改的内容,且上述修改不得违反本协议的许可限制条件,也不能允许、协助或以其他方式使得第三方违反本协议中的许可限制条件。
 
164
  1. 许可方在法律法规许可的范围内对协议条款享有最终解释权。
165
  2. 本协议的订立、效力、解释、履行、修改和终止,使用【Orion-14B系列】模型以及争议的解 决均适用中华人民共和国大陆地区(仅为本协议之目的,不包括香港、澳门和台湾)法律,并排除冲突法的适用。
166
  3. 因使用【Orion-14B系列】模型而发生的任何争议,各方应首先通过友好协商的方式加以解决。协商不成时,向许可方所在地人民法院提起诉讼。
 
README.MD ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- markdownlint-disable first-line-h1 -->
2
+ <!-- markdownlint-disable html -->
3
+ <div align="center">
4
+ <img src="./assets/imgs/orion_start.PNG" alt="logo" width="50%" />
5
+ </div>
6
+
7
+ <div align="center">
8
+ <h1>
9
+ Orion-14B
10
+ </h1>
11
+ </div>
12
+
13
+ <div align="center">
14
+
15
+
16
+ <h4 align="center">
17
+ <p>
18
+ <b>🌐English</b> |
19
+ <a href="./README_zh.MD">🇨🇳中文</a><br><br>
20
+ 🤗 <a href="https://huggingface.co/OrionStarAI" target="_blank">HuggingFace Mainpage</a> | 🤖 <a href="https://modelscope.cn/organization/OrionStarAI" target="_blank">ModelScope Mainpage</a><br>🎬 <a href="https://huggingface.co/spaces/OrionStarAI/Orion-14B-App-Demo" target="_blank">HuggingFace Demo</a> | 🎫 <a href="https://modelscope.cn/studios/OrionStarAI/Orion-14B-App-Demo/summary" target="_blank">ModelScope Demo</a><br>😺 <a href="https://github.com/OrionStarAI/Orion" target="_blank">GitHub</a><br>📖 <a href="https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf" target="_blank">Tech Report</a>
21
+ <p>
22
+ </h4>
23
+
24
+ </div>
25
+
26
+
27
+
28
+ # Table of Contents
29
+
30
+ - [📖 Model Introduction](#model-introduction)
31
+ - [🔗 Model Download](#model-download)
32
+ - [🔖 Model Benchmark](#model-benchmark)
33
+ - [📊 Model Inference](#model-inference)
34
+ - [📜 Declarations & License](#declarations-license)
35
+ - [🥇 Company Introduction](#company-introduction)
36
+
37
+ # 1. Model Introduction
38
+
39
+ - Orion-14B series models are open-source multilingual large language models trained from scratch by OrionStarAI. The base model is trained on 2.5T multilingual corpus, including Chinese, English, Japanese, Korean, etc, and it exhibits superior performance in these languages. For details, please refer to [tech report](https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf).
40
+
41
+ - The Orion-14B series models exhibit the following features:
42
+ - Among models with 20B-parameter scale level, Orion-14B-Base model shows outstanding performance in comprehensive evaluations.
43
+ - Strong multilingual capabilities, significantly outperforming in Japanese and Korean testsets.
44
+ - The fine-tuned models demonstrate strong adaptability, excelling in human-annotated blind tests.
45
+ - The long-chat version supports extremely long texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k.
46
+ - The quantized versions reduce model size by 70%, improve inference speed by 30%, with performance loss less than 1%.
47
+ <table style="border-collapse: collapse; width: 100%;">
48
+ <tr>
49
+ <td style="border: none; padding: 10px; box-sizing: border-box;">
50
+ <img src="./assets/imgs/opencompass_en.png" alt="opencompass" style="width: 100%; height: auto;">
51
+ </td>
52
+ <td style="border: none; padding: 10px; box-sizing: border-box;">
53
+ <img src="./assets/imgs/model_cap_en.png" alt="modelcap" style="width: 100%; height: auto;">
54
+ </td>
55
+ </tr>
56
+ </table>
57
+
58
+ - Orion-14B series models including:
59
+ - **Orion-14B-Base:** A multilingual large language foundational model with 14 billion parameters, pretrained on a diverse dataset of 2.5 trillion tokens.
60
+ - **Orion-14B-Chat:** A chat-model fine-tuned on a high-quality corpus aims to provide an excellence interactive experience for users in the large model community.
61
+ - **Orion-14B-LongChat:** The long-context version excels at handling extremely lengthy texts, performing exceptionally well at a token length of 200k and can support up to a maximum of 320k.
62
+ - **Orion-14B-Chat-RAG:** A chat-model fine-tuned on a custom retrieval augmented generation dataset, achieving superior performance in retrieval augmented generation tasks.
63
+ - **Orion-14B-Chat-Plugin:** A chat-model specifically tailored for plugin and function calling tasks, ideal for agent-related scenarios where the LLM acts as a plugin and function call system.
64
+ - **Orion-14B-Base-Int4:** A quantized base model utilizing 4-bit integer weights. It significantly reduces the model size by 70% and increases the inference speed by 30% while incurring a minimal performance loss of only 1%.
65
+ - **Orion-14B-Chat-Int4:** A quantized chat model utilizing 4-bit integer weights.
66
+
67
+ # 2. Model Download
68
+
69
+ Model release and download links are provided in the table below:
70
+
71
+ | Model Name | HuggingFace Download Links | ModelScope Download Links |
72
+ |-------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
73
+ | ⚾Orion-14B-Base | [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base) | [Orion-14B-Base](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base/summary) |
74
+ | 😛Orion-14B-Chat | [Orion-14B-Chat](https://huggingface.co/OrionStarAI/Orion-14B-Chat) | [Orion-14B-Chat](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat/summary) |
75
+ | 📃Orion-14B-LongChat | [Orion-14B-LongChat](https://huggingface.co/OrionStarAI/Orion-14B-LongChat) | [Orion-14B-LongChat](https://modelscope.cn/models/OrionStarAI/Orion-14B-LongChat/summary) |
76
+ | 🔎Orion-14B-Chat-RAG | [Orion-14B-Chat-RAG](https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG) | [Orion-14B-Chat-RAG](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-RAG/summary) |
77
+ | 🔌Orion-14B-Chat-Plugin | [Orion-14B-Chat-Plugin](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Plugin) | [Orion-14B-Chat-Plugin](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Plugin/summary) |
78
+ | 💼Orion-14B-Base-Int4 | [Orion-14B-Base-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Base-Int4) | [Orion-14B-Base-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base-Int4/summary) |
79
+ | 📦Orion-14B-Chat-Int4 | [Orion-14B-Chat-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Int4) | [Orion-14B-Chat-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Int4/summary) |
80
+
81
+ # 3. Model Benchmarks
82
+
83
+ ## 3.1. Base Model Orion-14B-Base Benchmarks
84
+ ### 3.1.1. LLM evaluation results on examination and professional knowledge
85
+ | Model | C-Eval | CMMLU | MMLU | AGIEval | Gaokao | BBH |
86
+ |--------------------|----------|----------|----------|----------|----------|----------|
87
+ | LLaMA2-13B | 41.4 | 38.4 | 55.0 | 30.9 | 18.2 | 45.6 |
88
+ | Skywork-13B | 59.1 | 61.4 | 62.7 | 43.6 | 56.1 | 48.3 |
89
+ | Baichuan2-13B | 59.0 | 61.3 | 59.5 | 37.4 | 45.6 | 49.0 |
90
+ | QWEN-14B | 71.7 | 70.2 | 67.9 | 51.9 | **62.5** | 53.7 |
91
+ | InternLM-20B | 58.8 | 59.0 | 62.1 | 44.6 | 45.5 | 52.5 |
92
+ | **Orion-14B-Base** | **72.9** | **70.6** | **69.9** | **54.7** | 62.1 | **56.5** |
93
+
94
+ ### 3.1.2. LLM evaluation results on language understanding and common knowledge
95
+ | Model |RACE-middle|RACE-high |HellaSwag | PIQA | Lambada | WSC |
96
+ |--------------------|----------|----------|----------|----------|----------|----------|
97
+ | LLaMA 2-13B | 63.0 | 58.9 | 77.5 | 79.8 | 76.5 | 66.3 |
98
+ | Skywork-13B | 87.6 | 84.1 | 73.7 | 78.3 | 71.8 | 66.3 |
99
+ | Baichuan 2-13B | 68.9 | 67.2 | 70.8 | 78.1 | 74.1 | 66.3 |
100
+ | QWEN-14B | 93.0 | 90.3 | **80.2** | 79.8 | 71.4 | 66.3 |
101
+ | InternLM-20B | 86.4 | 83.3 | 78.1 | **80.3** | 71.8 | 68.3 |
102
+ | **Orion-14B-Base** | **93.2** | **91.3** | 78.5 | 79.5 | **78.8** | **70.2** |
103
+
104
+ ### 3.1.3. LLM evaluation results of OpenCompass testsets
105
+ | Model | Average | Examination | Language | Knowledge | Understanding | Reasoning |
106
+ |------------------|----------|----------|----------|----------|----------|----------|
107
+ | LLaMA 2-13B | 47.3 | 45.2 | 47.0 | 58.3 | 50.9 | 43.6 |
108
+ | Skywork-13B | 53.6 | 61.1 | 51.3 | 52.7 | 64.5 | 45.2 |
109
+ | Baichuan 2-13B | 49.4 | 51.8 | 47.5 | 48.9 | 58.1 | 44.2 |
110
+ | QWEN-14B | 62.4 | 71.3 | 52.67 | 56.1 | 68.8 | 60.1 |
111
+ | InternLM-20B | 59.4 | 62.5 | 55.0 | **60.1** | 67.3 | 54.9 |
112
+ |**Orion-14B-Base**| **64.3** | **71.4** | **55.0** | 60.0 | **71.9** | **61.6** |
113
+
114
+ ### 3.1.4. Comparison of LLM performances on Japanese testsets
115
+ | Model |**Average**| JCQA | JNLI | MARC | JSQD | JQK | XLS | XWN | MGSM |
116
+ |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
117
+ | PLaMo-13B | 52.3 | 56.7 | 42.8 | 95.8 | 70.6 | 71.0 | 8.70 | 70.5 | 2.40 |
118
+ | WebLab-10B | 50.7 | 66.6 | 53.7 | 82.1 | 62.9 | 56.2 | 10.0 | 72.0 | 2.40 |
119
+ | ELYZA-jp-7B | 48.8 | 71.7 | 25.3 | 86.6 | 70.8 | 64.1 | 2.50 | 62.1 | 7.20 |
120
+ | StableLM-jp-7B | 51.1 | 33.4 | 43.3 | **96.7** | 70.6 | 78.1 | 10.7 | 72.8 | 2.80 |
121
+ | LLaMA 2-13B | 46.3 | 75.0 | 47.6 | 38.8 | 76.1 | 67.7 | 18.1 | 63.2 | 10.4 |
122
+ | Baichuan 2-13B | 57.1 | 73.7 | 31.3 | 91.6 | 80.5 | 63.3 | 18.6 | 72.2 | 25.2 |
123
+ | QWEN-14B | 65.8 | 85.9 | 60.7 | 97.0 | 83.3 | 71.8 | 18.8 | 70.6 | 38.0 |
124
+ | Yi-34B | 67.1 | 83.8 | 61.2 | 95.2 | **86.1** | 78.5 | **27.2** | 69.2 | 35.2 |
125
+ | **Orion-14B-Base** | **69.1** | **88.2** | **75.8** | 94.1 | 75.7 | **85.1** | 17.3 | **78.8** | **38.0** |
126
+
127
+ ### 3.1.5. Comparison of LLM performances on Korean testsets. n = 0 and n = 5 stand for n-shot prompts used in the evaluation
128
+ |Model | **Average**<br>n=0&nbsp;&nbsp;n=5 | HellaSwag<br>n=0&nbsp;&nbsp;n=5 | COPA<br> n=0&nbsp;&nbsp;n=5 | BooIQ<br>n=0&nbsp;&nbsp;n=5 | SentiNeg<br>n=0&nbsp;&nbsp;n=5|
129
+ |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
130
+ | KoGPT | 53.0 &nbsp;&nbsp; 70.1 | 55.9 &nbsp;&nbsp; 58.3 | 73.5 &nbsp;&nbsp; 72.9 | 45.1 &nbsp;&nbsp; 59.8 | 37.5 &nbsp;&nbsp; 89.4 |
131
+ | Polyglot-ko-13B | 69.6 &nbsp;&nbsp; 73.7 |**59.5** &nbsp;&nbsp; **63.1**|**79.4** &nbsp;&nbsp; **81.1**| 48.2 &nbsp;&nbsp; 60.4 | 91.2 &nbsp;&nbsp; 90.2 |
132
+ | LLaMA 2-13B | 46.7 &nbsp;&nbsp; 63.7 | 41.3 &nbsp;&nbsp; 44.0 | 59.3 &nbsp;&nbsp; 63.8 | 34.9 &nbsp;&nbsp; 73.8 | 51.5 &nbsp;&nbsp; 73.4 |
133
+ | Baichuan 2-13B | 52.1 &nbsp;&nbsp; 58.7 | 39.2 &nbsp;&nbsp; 39.6 | 60.6 &nbsp;&nbsp; 60.6 | 58.4 &nbsp;&nbsp; 61.5 | 50.3 &nbsp;&nbsp; 72.9 |
134
+ | QWEN-14B | 53.8 &nbsp;&nbsp; 73.7 | 45.3 &nbsp;&nbsp; 46.8 | 64.9 &nbsp;&nbsp; 68.9 | 33.4 &nbsp;&nbsp; 83.5 | 71.5 &nbsp;&nbsp; 95.7 |
135
+ | Yi-34B | 54.2 &nbsp;&nbsp; 72.1 | 44.6 &nbsp;&nbsp; 44.7 | 58.0 &nbsp;&nbsp; 60.6 | 65.9 &nbsp;&nbsp; 90.2 | 48.3 &nbsp;&nbsp; 92.9 |
136
+ |**Orion-14B-Chat**|**74.5** &nbsp;&nbsp; **79.6**| 47.0 &nbsp;&nbsp; 49.6 | 77.7 &nbsp;&nbsp; 79.4 |**81.6** &nbsp;&nbsp; **90.7**|**92.4** &nbsp;&nbsp; **98.7**|
137
+
138
+ ### 3.1.6. Multilingual evaluation
139
+ | Model | Train Lang | Japanese | Korean | Chinese | English |
140
+ |--------------------|------------|----------|----------|----------|----------|
141
+ | PLaMo-13B | En,Jp | 52.3 | * | * | * |
142
+ | Weblab-10B | En,Jp | 50.7 | * | * | * |
143
+ | ELYZA-jp-7B | En,Jp | 48.8 | * | * | * |
144
+ | StableLM-jp-7B | En,Jp | 51.1 | * | * | * |
145
+ | KoGPT-6B | En,Ko | * | 70.1 | * | * |
146
+ | Polyglot-ko-13B | En,Ko | * | 70.7 | * | * |
147
+ | Baichuan2-13B | Multi | 57.1 | 58.7 | 50.8 | 57.1 |
148
+ | Qwen-14B | Multi | 65.8 | 73.7 | 64.5 | 65.4 |
149
+ | Llama2-13B | Multi | 46.3 | 63.7 | 41.4 | 55.3 |
150
+ | Yi-34B | Multi | 67.1 | 72.2 | 58.7 | **68.8** |
151
+ | **Orion-14B-Chat** | Multi | **69.1** | **79.5** | **67.9** | 67.3 |
152
+
153
+
154
+ ## 3.2. Chat Model Orion-14B-Chat Benchmarks
155
+ ### 3.2.1. Chat model subjective evaluation of MTBench
156
+ | Model | First-Turn | Second-Turn | **Average** |
157
+ |----------------------|----------|----------|----------|
158
+ | Baichuan2-13B-Chat | 7.05 | 6.47 | 6.76 |
159
+ | Qwen-14B-Chat | 7.30 | 6.62 | 6.96 |
160
+ | Llama2-13B-Chat | 7.10 | 6.20 | 6.65 |
161
+ | InternLM-20B-Chat | 7.03 | 5.93 | 6.48 |
162
+ | **Orion-14B-Chat** | **7.68** | **7.07** | **7.37** |
163
+ \* use vllm for inference
164
+
165
+ ### 3.2.2. Chat model subjective evaluation of AlignBench
166
+ | Model | Math. | Logi. | Basic. | Chi. | Comp. | Writ. | Role. | Prof. |**Avg.**|
167
+ |--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
168
+ | Baichuan2-13B-Chat | 3.76 | 4.07 | 6.22 | 6.05 | 7.11 | 6.97 | 6.75 | 6.43 | 5.25 |
169
+ | Qwen-14B-Chat |**4.91**|**4.71**|**6.90**| 6.36 | 6.74 | 6.64 | 6.59 | 6.56 |**5.72**|
170
+ | Llama2-13B-Chat | 3.05 | 3.79 | 5.43 | 4.40 | 6.76 | 6.63 | 6.99 | 5.65 | 4.70 |
171
+ | InternLM-20B-Chat | 3.39 | 3.92 | 5.96 | 5.50 |**7.18**| 6.19 | 6.49 | 6.22 | 4.96 |
172
+ | **Orion-14B-Chat** | 4.00 | 4.24 | 6.18 |**6.57**| 7.16 |**7.36**|**7.16**|**6.99**| 5.51 |
173
+ \* use vllm for inference
174
+
175
+ ## 3.3. LongChat Model Orion-14B-LongChat Benchmarks
176
+ ### 3.3.1. LongChat evaluation of LongBench
177
+ | Model | NarrativeQA|MultiFieldQA-en|MultiFieldQA-zh| DuReader | QMSum | VCSUM | TREC | TriviaQA | LSHT |RepoBench-P|
178
+ |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
179
+ | GPT-3.5-Turbo-16k | **23.60** | **52.30** | **61.20** | 28.70 | 23.40 | **16.00** | 68.00 | **91.40** | 29.20 | 53.60 |
180
+ | LongChat-v1.5-7B-32k | 16.90 | 41.40 | 29.10 | 19.50 | 22.70 | 9.90 | 63.50 | 82.30 | 23.20 | 55.30 |
181
+ | Vicuna-v1.5-7B-16k | 19.40 | 38.50 | 43.00 | 19.30 | 22.80 | 15.10 | 71.50 | 86.20 | 28.80 | 43.50 |
182
+ | Yi-6B-200K | 14.11 | 36.74 | 22.68 | 14.01 | 20.44 | 8.08 | 72.00 | 86.61 | 38.00 | **63.29** |
183
+ | Orion-14B-LongChat | 19.47 | 48.11 | 55.84 | **37.02** | **24.87** | 15.44 | **77.00** | 89.12 | **45.50** | 54.31 |
184
+
185
+
186
+ ## 3.4. Chat RAG Model Benchmarks
187
+ ### 3.4.1. LLM evaluation results of self-built RAG testsets
188
+ |Model|Effectiveness of Response(Keyword)|*Effectiveness of Response(subjective evaluation)|Quoting Ability|Fallback Ability|*AutoQA|*Data Extraction|
189
+ |---------------------|------|------|------|------|------|------|
190
+ | Baichuan2-13B-Chat | 85 | 76 | 1 | 0 | 69 | 51 |
191
+ | Qwen-14B-Chat | 79 | 77 | 75 | 47 | 68 | 72 |
192
+ | Qwen-72B-Chat(Int4) | 87 | 89 | 90 | 32 | 67 | 76 |
193
+ | GPT-4 | 91 | 94 | 96 | 95 | 75 | 86 |
194
+ | Orion-14B-Chat-RAG | 86 | 87 | 91 | 97 | 73 | 71 |
195
+ \* means manual assessment
196
+
197
+ ## 3.5. Chat Plugin Model Orion-14B-Chat-Plugin Benchmarks
198
+ ### 3.5.1. LLM evaluation results of self-built plugin testsets
199
+ |Model |Intent Recognition with Full Params |Intent Recognition with Missing Params |Non-Plugin Invocation Recognition |
200
+ |-----------------------|--------|-----------|--------|
201
+ | Baichuan2-13B-Chat | 25 | 0 | 0 |
202
+ | Qwen-14B-Chat | 55 | 0 | 50 |
203
+ | GPT-4 | **95** | 52.38 | 70 |
204
+ | Orion-14B-Chat-Plugin | 92.5 | **60.32** | **90** |
205
+
206
+ ## 3.6. Quantized Model Orion-14B-Base-Int4 Benchmarks
207
+ ### 3.6.1. Comparison of before and after quantization
208
+ |Model |Size(GB)|Inference Speed(tokens/s)|C-Eval|CMMLU|MMLU|RACE|HellaSwag|
209
+ |-------------------------|-------|-----|------|------|------|------|------|
210
+ | OrionStar-14B-Base | 28.0 | 135 | 72.8 | 70.6 | 70.0 | 93.3 | 78.5 |
211
+ | OrionStar-14B-Base-Int4 | 8.3 | 178 | 71.8 | 69.8 | 69.2 | 93.1 | 78.0 |
212
+
213
+ # 4. Model Inference
214
+
215
+ Model weights, source code, and configuration needed for inference are published on Hugging Face, and the download link
216
+ is available in the table at the beginning of this document. We demonstrate various inference methods here, and the
217
+ program will automatically download the necessary resources from Hugging Face.
218
+
219
+ ## 4.1. Python Code
220
+
221
+ ```python
222
+ import torch
223
+ from transformers import AutoModelForCausalLM, AutoTokenizer
224
+ from transformers.generation.utils import GenerationConfig
225
+
226
+ tokenizer = AutoTokenizer.from_pretrained("OrionStarAI/Orion-14B", use_fast=False, trust_remote_code=True)
227
+ model = AutoModelForCausalLM.from_pretrained("OrionStarAI/Orion-14B", device_map="auto",
228
+ torch_dtype=torch.bfloat16, trust_remote_code=True)
229
+
230
+ model.generation_config = GenerationConfig.from_pretrained("OrionStarAI/Orion-14B")
231
+ messages = [{"role": "user", "content": "Hello, what is your name? "}]
232
+ response = model.chat(tokenizer, messages, streaming=False)
233
+ print(response)
234
+
235
+ ```
236
+
237
+ In the above Python code, the model is loaded with `device_map='auto'` to utilize all available GPUs. To specify the
238
+ device, you can use something like `export CUDA_VISIBLE_DEVICES=0,1` (using GPUs 0 and 1).
239
+
240
+ ## 4.2. Command Line Tool
241
+
242
+ ```shell
243
+ CUDA_VISIBLE_DEVICES=0 python cli_demo.py
244
+ ```
245
+
246
+ This command-line tool is designed for chat scenarios, and thus, it does not support calling the base model.
247
+
248
+ ## 4.3. Direct Script Inference
249
+
250
+ ```shell
251
+
252
+ # base model
253
+ CUDA_VISIBLE_DEVICES=0 python demo/text_generation_base.py --model OrionStarAI/Orion-14B --tokenizer OrionStarAI/Orion-14B --prompt hello
254
+
255
+ # chat model
256
+ CUDA_VISIBLE_DEVICES=0 python demo/text_generation.py --model OrionStarAI/Orion-14B-Chat --tokenizer OrionStarAI/Orion-14B-Chat --prompt hi
257
+
258
+ ```
259
+
260
+ ## 4.4 Example Output
261
+
262
+ ### 4.4.1. Casual Chat
263
+
264
+ `````
265
+ User: Hello
266
+ Orion-14B: Hello! How can I help you today? If you have any questions or need assistance, feel free to ask.
267
+ User: What functions do you have?
268
+ Orion-14B: As an AI language model, I have a wide range of functions and capabilities, including but not limited to:
269
+ Answering general knowledge questions: I can provide information on various topics such as history, science, geography, and more.
270
+ Providing definitions and explanations: I can explain complex concepts and provide definitions for words and phrases.
271
+ Assisting with tasks: I can help with simple tasks like setting reminders, converting units of measurement, and even ordering food from restaurants.
272
+ Generating text: I can write short stories, essays, articles, and other types of content based on prompts given to me.
273
+ Translating languages: I can translate text from one language to another.
274
+ Chatting: I can engage in conversation with users and respond to their queries in a conversational manner.
275
+ Summarizing long texts: I can summarize longer texts like articles, books, and research papers.
276
+ Generating random numbers and names: I can generate random numbers within a specified range and also suggest names based on certain criteria.
277
+ Playing games: I can play simple games like Hangman, Trivia, and more.
278
+ Providing recommendations: I can recommend movies, music, books, and other forms of entertainment based on user preferences.
279
+ These are just some of the many functions that I am capable of performing. If you have a specific task in mind, feel free to ask me about it.
280
+ User: Tell me a joke.
281
+ Orion-14B: Sure, here's a classic one-liner: Why don't scientists trust atoms? Because they make up everything.
282
+ `````
283
+
284
+ ### 4.4.2. Japanese & Korean Chat
285
+
286
+ `````
287
+ User:自己を紹介してください
288
+ Orion-14B:こんにちは、私の名前はChatMaxで、OrionStarによって開発されたAIアシスタントです。私はユーザーに正確で、客観的で、有用な回答を提供し、彼らが問題を解決し、情報を取得するのを助けることができます。
289
+ User:자기소개를 해주세요.
290
+ Orion-14B:안녕하세요, 제 이름은 ChatMax입니다. OrionStar에서 개발한 AI 어시스턴트입니다. 저는 사용자들에게 정확하고 객관적이며 유용한 답변을 제공하여 문제를 해결하고 정보를 얻는 데 도움을 줄 수 있습니다.
291
+ `````
292
+
293
+
294
+ # 5. Declarations, License
295
+
296
+ ## 5.1. Declarations
297
+
298
+ We strongly urge all users not to use the Orion-14B model for any activities that may harm national or social security or violate the law.
299
+ Additionally, we request users not to use the Orion-14B model for internet services without proper security review and filing.
300
+ We hope all users abide by this principle to ensure that technological development takes place in a regulated and legal environment.
301
+ We have done our best to ensure the compliance of the data used in the model training process. However, despite our
302
+ significant efforts, unforeseen issues may still arise due to the complexity of the model and data. Therefore, if any
303
+ problems arise due to the use of the Orion-14B open-source model, including but not limited to data security
304
+ issues, public opinion risks, or any risks and issues arising from the model being misled, abused, disseminated, or
305
+ improperly utilized, we will not assume any responsibility.
306
+
307
+ ## 5.2. License
308
+
309
+ Community use of the Orion-14B series models
310
+ - For code, please comply with [Apache License Version 2.0](./LICENSE)<br>
311
+ - For model, please comply with [【Orion-14B Series】 Models Community License Agreement](./ModelsCommunityLicenseAgreement)
312
+
313
+
314
+ # 6. Company Introduction
315
+
316
+ OrionStar is a leading global service robot solutions company, founded in September 2016. OrionStar is dedicated to
317
+ using artificial intelligence technology to create the next generation of revolutionary robots, allowing people to break
318
+ free from repetitive physical labor and making human work and life more intelligent and enjoyable. Through technology,
319
+ OrionStar aims to make society and the world a better place.
320
+
321
+ OrionStar possesses fully self-developed end-to-end artificial intelligence technologies, such as voice interaction and
322
+ visual navigation. It integrates product development capabilities and technological application capabilities. Based on
323
+ the Orion robotic arm platform, it has launched products such as OrionStar AI Robot Greeting, AI Robot Greeting Mini,
324
+ Lucki, Coffee Master, and established the open platform OrionOS for Orion robots. Following the philosophy of "Born for
325
+ Truly Useful Robots", OrionStar empowers more people through AI technology.
326
+
327
+ **The core strengths of OrionStar lies in possessing end-to-end AI application capabilities,** including big data preprocessing, large model pretraining, fine-tuning, prompt engineering, agent, etc. With comprehensive end-to-end model training capabilities, including systematic data processing workflows and the parallel model training capability of hundreds of GPUs, it has been successfully applied in various industry scenarios such as government affairs, cloud services, international e-commerce, and fast-moving consumer goods.
328
+
329
+ Companies with demands for deploying large-scale model applications are welcome to contact us.<br>
330
+ **Enquiry Hotline: 400-898-7779**<br>
331
+ **E-mail: [email protected]**
332
+
333
+ <div align="center">
334
+ <img src="./assets/imgs/wechat_group.jpg" alt="wechat" width="40%" />
335
+ </div>
README_zh.MD ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- markdownlint-disable first-line-h1 -->
2
+ <!-- markdownlint-disable html -->
3
+ <div align="center">
4
+ <img src="./assets/imgs/orion_start.PNG" alt="logo" width="30%" />
5
+ </div>
6
+
7
+ <div align="center">
8
+ <h1>
9
+ Orion-14B
10
+ </h1>
11
+ </div>
12
+
13
+ <div align="center">
14
+
15
+
16
+ <h4 align="center">
17
+ <p>
18
+ <b>🇨🇳中文</b> |
19
+ <a href="./README.MD">🌐English</a><br><br>
20
+ 🤗 <a href="https://huggingface.co/OrionStarAI" target="_blank">HuggingFace主页</a> | 🤖 <a href="https://modelscope.cn/organization/OrionStarAI" target="_blank">ModelScope主页</a><br>🎬 <a href="https://huggingface.co/spaces/OrionStarAI/Orion-14B-App-Demo" target="_blank">HuggingFace在线试用</a> | 🎫 <a href="https://modelscope.cn/studios/OrionStarAI/Orion-14B-App-Demo/summary" target="_blank">ModelScope在线试用</a><br>😺 <a href="https://github.com/OrionStarAI/Orion" target="_blank">GitHub</a><br>📖 <a href="https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf" target="_blank">技术报告</a>
21
+ <p>
22
+ </h4>
23
+
24
+ </div>
25
+
26
+
27
+
28
+ # 目录
29
+
30
+ - [📖 模型介绍](#模型介绍)
31
+ - [🔗 下载路径](#下载路径)
32
+ - [🔖 评估结果](#评估结果)
33
+ - [📊 模型推理](#模型推理)
34
+ - [📜 声明协议](#声明协议)
35
+ - [🥇 企业介绍](#企业介绍)
36
+
37
+ # 1. 模型介绍
38
+
39
+ - Orion-14B-Base是一个具有140亿参数的多语种大模型,该模型在一个包含2.5万亿token的多样化数据集上进行了训练,涵盖了中文、英语、日语、韩语等多种语言。在多语言环境下的一系列任务中展现出卓越的性能。在主流的公开基准评测中,Orion-14B系列模型表现优异,多项指标显著超越同等参数基本的其他模型。具体技术细节请参考[技术报告](https://github.com/OrionStarAI/Orion/blob/master/doc/Orion14B_v3.pdf)。
40
+
41
+ - Orion-14B系列大模型有以下几个特点:
42
+ - 基座20B参数级别大模型综合评测效果表现优异
43
+ - 多语言能力强,在日语、韩语测试集上显著领先
44
+ - 微调模型适应性强,在人类标注盲测中,表现突出
45
+ - 长上下文版本支持超长文本,在200k token长度上效果优异,最长可支持可达320k
46
+ - 量化版本模型大小缩小70%,推理速度提升30%,性能损失小于1%
47
+
48
+ <table style="border-collapse: collapse; width: 100%;">
49
+ <tr>
50
+ <td style="border: none; padding: 10px; box-sizing: border-box;">
51
+ <img src="./assets/imgs/opencompass_zh.png" alt="opencompass" style="width: 100%; height: auto;">
52
+ </td>
53
+ <td style="border: none; padding: 10px; box-sizing: border-box;">
54
+ <img src="./assets/imgs/model_cap_zh.png" alt="modelcap" style="width: 100%; height: auto;">
55
+ </td>
56
+ </tr>
57
+ </table>
58
+
59
+ - 具体而言,Orion-14B系列大语言模型包含:
60
+ - **Orion-14B-Base:** 基于2.5万亿tokens多样化数据集训练处的140亿参数量级的多语言基座模型。
61
+ - **Orion-14B-Chat:** 基于高质量语料库微调的对话类模型,旨在为大模型社区提供更好的用户交互体验。
62
+ - **Orion-14B-LongChat:** 在200k token长度上效果优异,最长可支持可达320k,在长文本评估集上性能比肩专有模型。
63
+ - **Orion-14B-Chat-RAG:** 在一个定制的检索增强生成数据集上进行微调的聊天模型,在检索增强生成任务中取得了卓越的性能。
64
+ - **Orion-14B-Chat-Plugin:** 专门针对插件和函数调用任务定制的聊天模型,非常适用于使用代理的相关场景,其中大语言模型充当插件和函数调用系统。
65
+ - **Orion-14B-Base-Int4:** 一个使用int4进行量化的基座模型。它将模型大小显著减小了70%,同时提高了推理速度30%,仅引入了1%的最小性能损失。
66
+ - **Orion-14B-Chat-Int4:** 一个使用int4进行量化的对话模型。
67
+
68
+ # 2. 下载路径
69
+
70
+ 发布模型和下载链接见下表:
71
+
72
+ | 模型名称 | HuggingFace下载链接 | ModelScope下载链接 |
73
+ |---------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
74
+ | ⚾ 基座模型 | [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base) | [Orion-14B-Base](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base/summary) |
75
+ | 😛 对话模型 | [Orion-14B-Chat](https://huggingface.co/OrionStarAI/Orion-14B-Chat) | [Orion-14B-Chat](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat/summary) |
76
+ | 📃 长上下文模型 | [Orion-14B-LongChat](https://huggingface.co/OrionStarAI/Orion-14B-LongChat) | [Orion-14B-LongChat](https://modelscope.cn/models/OrionStarAI/Orion-14B-LongChat/summary) |
77
+ | 🔎 检索增强模型 | [Orion-14B-Chat-RAG](https://huggingface.co/OrionStarAI/Orion-14B-Chat-RAG) | [Orion-14B-Chat-RAG](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-RAG/summary) |
78
+ | 🔌 插件模型 | [Orion-14B-Chat-Plugin](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Plugin) | [Orion-14B-Chat-Plugin](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Plugin/summary)|
79
+ | 💼 基座Int4量化模型 | [Orion-14B-Base-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Base-Int4) | [Orion-14B-Base-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Base-Int4/summary) |
80
+ | 📦 对话Int4量化模型 | [Orion-14B-Chat-Int4](https://huggingface.co/OrionStarAI/Orion-14B-Chat-Int4) | [Orion-14B-Chat-Int4](https://modelscope.cn/models/OrionStarAI/Orion-14B-Chat-Int4/summary) |
81
+
82
+ # 3. 评估结果
83
+
84
+ ## 3.1. 基座模型Orion-14B-Base评估
85
+
86
+ ### 3.1.1. 专业知识与试题评估结果
87
+ | 模型名称 | C-Eval | CMMLU | MMLU | AGIEval | Gaokao | BBH |
88
+ |--------------------|----------|----------|----------|----------|----------|----------|
89
+ | LLaMA2-13B | 41.4 | 38.4 | 55.0 | 30.9 | 18.2 | 45.6 |
90
+ | Skywork-13B | 59.1 | 61.4 | 62.7 | 43.6 | 56.1 | 48.3 |
91
+ | Baichuan2-13B | 59.0 | 61.3 | 59.5 | 37.4 | 45.6 | 49.0 |
92
+ | QWEN-14B | 71.7 | 70.2 | 67.9 | 51.9 | **62.5** | 53.7 |
93
+ | InternLM-20B | 58.8 | 59.0 | 62.1 | 44.6 | 45.5 | 52.5 |
94
+ | **Orion-14B-Base** | **72.9** | **70.6** | **69.9** | **54.7** | 62.1 | **56.5** |
95
+
96
+ ### 3.1.2. 理解与通识评估结果
97
+ | 模型名称 |RACE-middle|RACE-high| HellaSwag| PIQA | Lambada | WSC |
98
+ |--------------------|----------|----------|----------|----------|----------|----------|
99
+ | LLaMA 2-13B | 63.0 | 58.9 | 77.5 | 79.8 | 76.5 | 66.3 |
100
+ | Skywork-13B | 87.6 | 84.1 | 73.7 | 78.3 | 71.8 | 66.3 |
101
+ | Baichuan 2-13B | 68.9 | 67.2 | 70.8 | 78.1 | 74.1 | 66.3 |
102
+ | QWEN-14B | 93.0 | 90.3 | **80.2** | 79.8 | 71.4 | 66.3 |
103
+ | InternLM-20B | 86.4 | 83.3 | 78.1 | **80.3** | 71.8 | 68.3 |
104
+ | **Orion-14B-Base** | **93.2** | **91.3** | 78.5 | 79.5 | **78.8** | **70.2** |
105
+
106
+ ### 3.1.3. OpenCompass评测集评估结果
107
+ | 模型名称 | Average | Examination | Language | Knowledge | Understanding | Reasoning |
108
+ |------------------|----------|----------|----------|----------|----------|----------|
109
+ | LLaMA 2-13B | 47.3 | 45.2 | 47.0 | 58.3 | 50.9 | 43.6 |
110
+ | Skywork-13B | 53.6 | 61.1 | 51.3 | 52.7 | 64.5 | 45.2 |
111
+ | Baichuan 2-13B | 49.4 | 51.8 | 47.5 | 48.9 | 58.1 | 44.2 |
112
+ | QWEN-14B | 62.4 | 71.3 | 52.67 | 56.1 | 68.8 | 60.1 |
113
+ | InternLM-20B | 59.4 | 62.5 | 55.0 | **60.1** | 67.3 | 54.9 |
114
+ |**Orion-14B-Base**| **64.3** | **71.4** | **55.0** | 60.0 | **71.9** | **61.6** |
115
+
116
+ ### 3.1.4. 日语测试集评估结果
117
+ | 模型名称 |**Average**| JCQA | JNLI | MARC | JSQD | JQK | XLS | XWN | MGSM |
118
+ |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
119
+ | PLaMo-13B | 52.3 | 56.7 | 42.8 | 95.8 | 70.6 | 71.0 | 8.70 | 70.5 | 2.40 |
120
+ | WebLab-10B | 50.7 | 66.6 | 53.7 | 82.1 | 62.9 | 56.2 | 10.0 | 72.0 | 2.40 |
121
+ | ELYZA-jp-7B | 48.8 | 71.7 | 25.3 | 86.6 | 70.8 | 64.1 | 2.50 | 62.1 | 7.20 |
122
+ | StableLM-jp-7B | 51.1 | 33.4 | 43.3 | **96.7** | 70.6 | 78.1 | 10.7 | 72.8 | 2.80 |
123
+ | LLaMA 2-13B | 46.3 | 75.0 | 47.6 | 38.8 | 76.1 | 67.7 | 18.1 | 63.2 | 10.4 |
124
+ | Baichuan 2-13B | 57.1 | 73.7 | 31.3 | 91.6 | 80.5 | 63.3 | 18.6 | 72.2 | 25.2 |
125
+ | QWEN-14B | 65.8 | 85.9 | 60.7 | 97.0 | 83.3 | 71.8 | 18.8 | 70.6 | 38.0 |
126
+ | Yi-34B | 67.1 | 83.8 | 61.2 | 95.2 | **86.1** | 78.5 | **27.2** | 69.2 | 35.2 |
127
+ | **Orion-14B-Base** | **69.1** | **88.2** | **75.8** | 94.1 | 75.7 | **85.1** | 17.3 | **78.8** | **38.0** |
128
+
129
+ ### 3.1.5. 韩语测试集n-shot评估结果
130
+ | 模型名称 | **Average**<br>n=0&nbsp;&nbsp;n=5 | HellaSwag<br>n=0&nbsp;&nbsp;n=5 | COPA<br> n=0&nbsp;&nbsp;n=5 | BooIQ<br>n=0&nbsp;&nbsp;n=5 | SentiNeg<br>n=0&nbsp;&nbsp;n=5|
131
+ |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
132
+ | KoGPT | 53.0 &nbsp;&nbsp; 70.1 | 55.9 &nbsp;&nbsp; 58.3 | 73.5 &nbsp;&nbsp; 72.9 | 45.1 &nbsp;&nbsp; 59.8 | 37.5 &nbsp;&nbsp; 89.4 |
133
+ | Polyglot-ko-13B | 69.6 &nbsp;&nbsp; 73.7 |**59.5** &nbsp;&nbsp; **63.1**|**79.4** &nbsp;&nbsp; **81.1**| 48.2 &nbsp;&nbsp; 60.4 | 91.2 &nbsp;&nbsp; 90.2 |
134
+ | LLaMA 2-13B | 46.7 &nbsp;&nbsp; 63.7 | 41.3 &nbsp;&nbsp; 44.0 | 59.3 &nbsp;&nbsp; 63.8 | 34.9 &nbsp;&nbsp; 73.8 | 51.5 &nbsp;&nbsp; 73.4 |
135
+ | Baichuan 2-13B | 52.1 &nbsp;&nbsp; 58.7 | 39.2 &nbsp;&nbsp; 39.6 | 60.6 &nbsp;&nbsp; 60.6 | 58.4 &nbsp;&nbsp; 61.5 | 50.3 &nbsp;&nbsp; 72.9 |
136
+ | QWEN-14B | 53.8 &nbsp;&nbsp; 73.7 | 45.3 &nbsp;&nbsp; 46.8 | 64.9 &nbsp;&nbsp; 68.9 | 33.4 &nbsp;&nbsp; 83.5 | 71.5 &nbsp;&nbsp; 95.7 |
137
+ | Yi-34B | 54.2 &nbsp;&nbsp; 72.1 | 44.6 &nbsp;&nbsp; 44.7 | 58.0 &nbsp;&nbsp; 60.6 | 65.9 &nbsp;&nbsp; 90.2 | 48.3 &nbsp;&nbsp; 92.9 |
138
+ |**Orion-14B-Base**|**74.5** &nbsp;&nbsp; **79.6**| 47.0 &nbsp;&nbsp; 49.6 | 77.7 &nbsp;&nbsp; 79.4 |**81.6** &nbsp;&nbsp; **90.7**|**92.4** &nbsp;&nbsp; **98.7**|
139
+
140
+ ### 3.1.6. 多语言评估结果
141
+ | 模型名称 | Train Lang | Japanese | Korean | Chinese | English |
142
+ |--------------------|------------|----------|----------|----------|----------|
143
+ | PLaMo-13B | En,Jp | 52.3 | * | * | * |
144
+ | Weblab-10B | En,Jp | 50.7 | * | * | * |
145
+ | ELYZA-jp-7B | En,Jp | 48.8 | * | * | * |
146
+ | StableLM-jp-7B | En,Jp | 51.1 | * | * | * |
147
+ | KoGPT-6B | En,Ko | * | 70.1 | * | * |
148
+ | Polyglot-ko-13B | En,Ko | * | 70.7 | * | * |
149
+ | Baichuan2-13B | Multi | 57.1 | 58.7 | 50.8 | 57.1 |
150
+ | Qwen-14B | Multi | 65.8 | 73.7 | 64.5 | 65.4 |
151
+ | Llama2-13B | Multi | 46.3 | 63.7 | 41.4 | 55.3 |
152
+ | Yi-34B | Multi | 67.1 | 72.2 | 58.7 | **68.8** |
153
+ | **Orion-14B-Base** | Multi | **69.1** | **79.5** | **67.9** | 67.3 |
154
+
155
+ ## 3.2. 对话模型Orion-14B-Chat评估
156
+ ### 3.2.1. 对话模型MTBench主观评估
157
+ | 模型名称 | 第一轮 | 第二轮 | **平均** |
158
+ |----------------------|----------|----------|----------|
159
+ | Baichuan2-13B-Chat | 7.05 | 6.47 | 6.76 |
160
+ | Qwen-14B-Chat | 7.30 | 6.62 | 6.96 |
161
+ | Llama2-13B-Chat | 7.10 | 6.20 | 6.65 |
162
+ | InternLM-20B-Chat | 7.03 | 5.93 | 6.48 |
163
+ | **Orion-14B-Chat** | **7.68** | **7.07** | **7.37** |
164
+
165
+ \*这里评测使用vllm进行推理
166
+
167
+ ### 3.2.2. 对话模型AlignBench主观评估
168
+ | 模型名称 | 数学能力 | 逻辑推理 | 基本能力 | 中文理解 | 综合问答 | 写作能力 | 角色扮演 | 专业知识 | **平均** |
169
+ |--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
170
+ | Baichuan2-13B-Chat | 3.76 | 4.07 | 6.22 | 6.05 | 7.11 | 6.97 | 6.75 | 6.43 | 5.25 |
171
+ | Qwen-14B-Chat | **4.91** | **4.71** | **6.90** | 6.36 | 6.74 | 6.64 | 6.59 | 6.56 | **5.72** |
172
+ | Llama2-13B-Chat | 3.05 | 3.79 | 5.43 | 4.40 | 6.76 | 6.63 | 6.99 | 5.65 | 4.70 |
173
+ | InternLM-20B-Chat | 3.39 | 3.92 | 5.96 | 5.50 | **7.18** | 6.19 | 6.49 | 6.22 | 4.96 |
174
+ | **Orion-14B-Chat** | 4.00 | 4.24 | 6.18 | **6.57** | 7.16 | **7.36** | **7.16** | **6.99** | 5.51 |
175
+
176
+ \*这里评测使用vllm进行推理
177
+
178
+ ## 3.3. 长上下文模型Orion-14B-LongChat评估
179
+ ### 3.3.1. 长上下文模型LongBench评估
180
+ | 模型名称 | NarrativeQA| MultiFieldQA-en| MultiFieldQA-zh | DuReader | QMSum | VCSUM | TREC | TriviaQA | LSHT | RepoBench-P |
181
+ |--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
182
+ | GPT-3.5-Turbo-16k | **23.60** | **52.30** | **61.20** | 28.70 | 23.40 | **16.00** | 68.00 | **91.40** | 29.20 | 53.60 |
183
+ | LongChat-v1.5-7B-32k | 16.90 | 41.40 | 29.10 | 19.50 | 22.70 | 9.90 | 63.50 | 82.30 | 23.20 | 55.30 |
184
+ | Vicuna-v1.5-7B-16k | 19.40 | 38.50 | 43.00 | 19.30 | 22.80 | 15.10 | 71.50 | 86.20 | 28.80 | 43.50 |
185
+ | Yi-6B-200K | 14.11 | 36.74 | 22.68 | 14.01 | 20.44 | 8.08 | 72.00 | 86.61 | 38.00 | **63.29** |
186
+ | Orion-14B-LongChat | 19.47 | 48.11 | 55.84 | **37.02** | **24.87** | 15.44 | **77.00** | 89.12 | **45.50** | 54.31 |
187
+
188
+ ## 3.4. 检索增强模型Orion-14B-Chat-RAG评估
189
+ ### 3.4.1. 自建检索增强测试集评估结果
190
+ |模型名称|回复效果(关键字)|*回复效果(主观打分)|引用能力|兜底能力|*AutoQA|*抽取数据|
191
+ |---------------------|------|------|------|------|------|------|
192
+ | Baichuan2-13B-Chat | 85 | 76 | 1 | 0 | 69 | 51 |
193
+ | Qwen-14B-Chat | 79 | 77 | 75 | 47 | 68 | 72 |
194
+ | Qwen-72B-Chat(Int4) | 87 | 89 | 90 | 32 | 67 | 76 |
195
+ | GPT-4 | 91 | 94 | 96 | 95 | 75 | 86 |
196
+ | Orion-14B-Chat-RAG | 86 | 87 | 91 | 97 | 73 | 71 |
197
+ \* 表示人工评判结果
198
+
199
+ ## 3.5. 插件模型Orion-14B-Chat-Plugin评估
200
+ ### 3.5.1. 自建插件测试集评估结果
201
+ | 模型名称 | 全参数意图识别 | 缺参数意图识别 | 非插件调用识别 |
202
+ |-----------------------|--------|-----------|--------|
203
+ | Baichuan2-13B-Chat | 25 | 0 | 0 |
204
+ | Qwen-14B-Chat | 55 | 0 | 50 |
205
+ | GPT-4 | **95** | 52.38 | 70 |
206
+ | Orion-14B-Chat-Plugin | 92.5 | **60.32** | **90** |
207
+
208
+ ## 3.6. 量化模型Orion-14B-Base-Int4评估
209
+ ### 3.6.1. 量化前后整体对比
210
+ |模型名称|模型大小(GB)|推理速度(令牌数/秒)|C-Eval |CMMLU |MMLU |RACE | HellaSwag|
211
+ |-------------------------|------|-----|------|------|------|------|------|
212
+ | OrionStar-14B-Base | 28.0 | 135 | 72.8 | 70.6 | 70.0 | 93.3 | 78.5 |
213
+ | OrionStar-14B-Base-Int4 | 8.3 | 178 | 71.8 | 69.8 | 69.2 | 93.1 | 78.0 |
214
+
215
+
216
+ # 4. 模型推理
217
+
218
+ 推理所需的模型权重、源码、配置已发布在 Hugging Face,下载链接见本文档最开始的表格。我们在此示范多种推理方式。程序会自动从
219
+ Hugging Face 下载所需资源。
220
+
221
+ ## 4.1. Python 代码方式
222
+
223
+ ```python
224
+ import torch
225
+ from transformers import AutoModelForCausalLM, AutoTokenizer
226
+ from transformers.generation.utils import GenerationConfig
227
+
228
+ tokenizer = AutoTokenizer.from_pretrained("OrionStarAI/Orion-14B", use_fast=False, trust_remote_code=True)
229
+ model = AutoModelForCausalLM.from_pretrained("OrionStarAI/Orion-14B", device_map="auto",
230
+ torch_dtype=torch.bfloat16, trust_remote_code=True)
231
+
232
+ model.generation_config = GenerationConfig.from_pretrained("OrionStarAI/Orion-14B")
233
+ messages = [{"role": "user", "content": "你好! 你叫什么名字!"}]
234
+ response = model.chat(tokenizer, messages, streaming=Flase)
235
+ print(response)
236
+
237
+ ```
238
+
239
+ 在上述两段代码中,模型加载指定 `device_map='auto'`
240
+ ,会使用所有可用显卡。如需指定使用的设备,可以使用类似 `export CUDA_VISIBLE_DEVICES=0,1`(使用了0、1号显卡)的方式控制。
241
+
242
+ ## 4.2. 命令行工具方式
243
+
244
+ ```shell
245
+ CUDA_VISIBLE_DEVICES=0 python cli_demo.py
246
+ ```
247
+
248
+ 本命令行工具是为 Chat 场景设计,因此我们不支持使用该工具调用 Base 模型。
249
+
250
+ ## 4.3. 脚本直接推理
251
+
252
+ ```shell
253
+ # base model
254
+ CUDA_VISIBLE_DEVICES=0 python demo/text_generation_base.py --model OrionStarAI/Orion-14B --tokenizer OrionStarAI/Orion-14B --prompt 你好,你叫什么名字
255
+
256
+ # chat model
257
+ CUDA_VISIBLE_DEVICES=0 python demo/text_generation.py --model OrionStarAI/Orion-14B-Chat --tokenizer OrionStarAI/Orion-14B-Chat --prompt 你好,你叫什么名字
258
+
259
+ ```
260
+
261
+ ## 4.4. 示例输出
262
+
263
+ ### 4.4.1. 闲聊
264
+
265
+ `````
266
+ 用户:你好,你叫什么名字
267
+ Orion-14B:你好!我是一个人工智能助手,没有固定的名字。你可以随意称呼我。有什么我可以帮助你的吗?
268
+ 用户:讲个故事
269
+ Orion-14B:从前有一个小男孩叫杰克,他住在一个小村庄里。杰克非常喜欢冒险和探索,总是梦想着能够发现一些神奇的事情。
270
+
271
+ 有一天,杰克听说在附近的森林深处有一座传说中的魔法城堡,里面住着一个邪恶的巨人。这个巨人的名字叫格里姆,他被困在城堡中,无法离开。
272
+
273
+ 杰克决定要去解救这个巨人,因为他相信格里姆一定有自己的原因被困在那里。于是,他带着勇气和决心,踏上了前往魔法城堡的旅程。
274
+
275
+ 经过长时间的跋涉,杰克终于来到了城堡的大门前。他小心翼翼地推开大门,进入了一个充满神秘气息的房间。
276
+
277
+ 房间里弥漫着黑暗的气息,但杰克并没有被吓倒。他勇敢地向城堡深处走去,最终找到了格里姆。
278
+
279
+ 格里姆告诉杰克,他是被一个邪恶的女巫诅咒的,只有通过解开咒语才能获得自由。杰克决定要帮助格里姆,他开始寻找线索和解开咒语的方法。
280
+
281
+ 经过一番努力,杰克终于找到了一条通往女巫的秘密实验室的道路。他在那里发现了女巫留下的魔法书,书中记载了解开咒语的方法。
282
+
283
+ 杰克按照书上所写的步骤进行操作,成功地解开了格里姆身上的诅咒。巨人感激不已,他答应帮助杰克实现他的愿望。
284
+
285
+ 从此以后,杰克和格里姆成为了好朋友,他们一起经历了许多惊险刺激的冒险,并用他们的勇气和智慧战胜了各种困难。
286
+
287
+ 这个故事告诉我们,只要有勇气和决心,我们就能克服一切困难,实现自己的梦想。
288
+ `````
289
+
290
+ ### 4.4.2. 日韩
291
+
292
+ `````
293
+ 用户:自己を紹介してください
294
+ Orion-14B:こんにちは、私の名前はChatMaxで、OrionStarによって開発されたAIアシスタントです。私はユーザーに正確で、客観的で、有用な回答を提供し、彼らが問題を解決し、情報を取得するのを助けることができます。
295
+ 用户:자기소개를 해주세요.
296
+ Orion-14B:안녕하세요, 제 이름은 ChatMax입니다. OrionStar에서 개발한 AI 어시스턴트입니다. 저는 사용자들에게 정확하고 객관적이며 유용한 답변을 제공하여 문제를 해결하고 정보를 얻는 데 도움을 줄 수 있습니다.
297
+ `````
298
+
299
+
300
+ # 5. 声明、协议
301
+
302
+ ## 5.1. 声明
303
+
304
+ 我们强烈呼吁所有使用者,不要利用 Orion-14B 模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将
305
+ Orion-14B 模型用于未经适当安全审查和备案的互联网服务。
306
+
307
+ 我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。
308
+ 我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用
309
+ Orion-14B 开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
310
+
311
+ ## 5.2. 协议
312
+
313
+ 社区使用Orion-14B系列模型
314
+ - 代码请遵循 [Apache License Version 2.0](./LICENSE)<br>
315
+ - 模型请遵循 [Orion-14B系列模型社区许可协议](./ModelsCommunityLicenseAgreement)
316
+
317
+ # 6. 企业介绍
318
+
319
+ 猎户星空(OrionStar)是一家全球领先的服务机器人解决方案公司,成立于2016年9月。猎户星空致力于基于人工智能技术打造下一代革命性机器人,使人们能够摆脱重复的体力劳动,使人类的工作和生活更加智能和有趣,通过技术使社会和世界变得更加美好。
320
+
321
+ 猎户星空拥有完全自主开发的全链条人工智能技术,如语音交互和视觉导航。它整合了产品开发能力和技术应用能力。基于Orion机械臂平台,它推出了ORION
322
+ STAR AI Robot Greeting、AI Robot Greeting Mini、Lucki、Coffee
323
+ Master等产品,并建立了Orion机器人的开放平台OrionOS。通过为 **真正有用的机器人而生** 的理念实践,它通过AI技术为更多人赋能。
324
+
325
+ 凭借7年AI经验积累,猎户星空已推出的大模型深度应用“聚言”,并陆续面向行业客户提供定制化AI大模型咨询与服务解决方案,真正帮助客户实现企业经营效率领先同行目标。
326
+
327
+ **猎户星空具备全链条大模型应用能力的核心优势**,包括拥有从海量数据处理、大模型预训练、二次预训练、微调(Fine-tune)、Prompt
328
+ Engineering 、Agent开发的全链条能力和经验积累;拥有完整的端到端模型训练能力,包括系统化的数据处理流程和数百张GPU的并行模型训练能力,现已在大政务、云服务、出海电商、快消等多个行业场景落地。
329
+
330
+ ***欢迎有大模型应用落地需求的企业联系我们进行商务合作***<br>
331
+ **咨询电话:** 400-898-7779<br>
332
+ **电子邮箱:** [email protected]
333
+
334
+ <div align="center">
335
+ <img src="./assets/imgs/wechat_group.jpg" alt="wechat" width="40%" />
336
+ </div>