czczup commited on
Commit
7e98f54
1 Parent(s): c0189e3

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +67 -31
README.md CHANGED
@@ -29,23 +29,23 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
29
  | :--------------------------: | :-------------: | :------------: | :-----------: | :------------------: |
30
  | Model Size | - | - | 40B | 76B |
31
  | | | | | |
32
- | DocVQA<sub>test</sub> | 87.2 | 86.5 | 93.9 | TODO |
33
  | ChartQA<sub>test</sub> | 78.1 | 81.3 | 86.2 | 88.4 |
34
  | InfoVQA<sub>test</sub> | - | 72.7 | 78.7 | 82.0 |
35
  | TextVQA<sub>val</sub> | - | 73.5 | 83.0 | 84.4 |
36
- | OCRBench | 678 | 754 | 837 | TODO |
37
  | MME<sub>sum</sub> | 2070.2 | 2110.6 | 2315.0 | 2414.7 |
38
- | RealWorldQA | 68.0 | 67.5 | 71.8 | TODO |
39
  | AI2D<sub>test</sub> | 89.4 | 80.3 | 87.1 | 87.6 |
40
- | MMMU<sub>val</sub> | 63.1 | 58.5 | 53.9 | 55.2 |
41
  | MMBench-EN<sub>test</sub> | 81.0 | 73.9 | 86.8 | 86.5 |
42
  | MMBench-CN<sub>test</sub> | 80.2 | 73.8 | 86.5 | 86.3 |
43
  | CCBench<sub>dev</sub> | 57.3 | 28.4 | 80.6 | 81.0 |
44
  | MMVet<sub>GPT-4-0613</sub> | - | - | 68.5 | 69.8 |
45
- | MMVet<sub>GPT-4-Turbo</sub> | 67.5 | 64.0 | 65.5 | TODO |
46
  | SEED-Image | - | - | 78.2 | 78.2 |
47
- | HallBench<sub>avg</sub> | 43.9 | 45.6 | 56.9 | TODO |
48
- | MathVista<sub>testmini</sub> | 58.1 | 57.7 | 63.7 | TODO |
49
 
50
  - We simultaneously use InternVL and VLMEvalKit repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
51
 
@@ -59,7 +59,7 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
59
  | :------------------: | :----: | :------: | :--------------: | :-----------: | :------------------: |
60
  | Model Size | - | 34B | 34B | 40B | 76B |
61
  | | | | | | |
62
- | MVBench | - | - | - | 72.5 | TODO |
63
  | Video-MME<br>wo subs | 59.9 | 59.0 | 52.0 | TODO | TODO |
64
  | Video-MME<br>w/ subs | 63.3 | 59.4 | 54.9 | TODO | TODO |
65
 
@@ -76,6 +76,7 @@ We also welcome you to experience the InternVL2 series models in our [online dem
76
  > Please use transformers==4.37.2 to ensure the model works normally.
77
 
78
  ```python
 
79
  import numpy as np
80
  import torch
81
  import torchvision.transforms as T
@@ -163,17 +164,44 @@ def load_image(image_file, input_size=448, max_num=6):
163
  return pixel_values
164
 
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  path = 'OpenGVLab/InternVL2-Llama3-76B'
167
- # You need to set device_map='auto' to use multiple GPUs for inference.
168
- import os
169
- os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
 
170
  model = AutoModel.from_pretrained(
171
  path,
172
  torch_dtype=torch.bfloat16,
 
173
  low_cpu_mem_usage=True,
174
  trust_remote_code=True,
175
- device_map='auto').eval()
176
-
177
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
178
  # set the max number of tiles in `max_num`
179
  pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
@@ -317,6 +345,10 @@ print(f'User: {question}')
317
  print(f'Assistant: {response}')
318
  ```
319
 
 
 
 
 
320
  ## Deployment
321
 
322
  ### LMDeploy
@@ -374,23 +406,23 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
374
  | :--------------------------: | :-------------: | :------------: | :-----------: | :------------------: |
375
  | 模型大小 | - | - | 40B | 76B |
376
  | | | | | |
377
- | DocVQA<sub>test</sub> | 87.2 | 86.5 | 93.9 | |
378
- | ChartQA<sub>test</sub> | 78.1 | 81.3 | 86.2 | |
379
- | InfoVQA<sub>test</sub> | - | 72.7 | 78.7 | |
380
- | TextVQA<sub>val</sub> | - | 73.5 | 83.0 | |
381
- | OCRBench | 678 | 754 | 837 | |
382
- | MME<sub>sum</sub> | 2070.2 | 2110.6 | 2315.0 | |
383
- | RealWorldQA | 68.0 | 67.5 | 71.8 | |
384
- | AI2D<sub>test</sub> | 89.4 | 80.3 | 87.1 | |
385
- | MMMU<sub>val</sub> | 63.1 | 58.5 | 53.9 | |
386
- | MMBench-EN<sub>test</sub> | 81.0 | 73.9 | 86.8 | |
387
- | MMBench-CN<sub>test</sub> | 80.2 | 73.8 | 86.5 | |
388
- | CCBench<sub>dev</sub> | 57.3 | 28.4 | 80.6 | |
389
- | MMVet<sub>GPT-4-0613</sub> | - | - | 68.5 | |
390
- | MMVet<sub>GPT-4-Turbo</sub> | 67.5 | 64.0 | 65.5 | |
391
- | SEED-Image | - | - | 78.2 | |
392
- | HallBench<sub>avg</sub> | 43.9 | 45.6 | 56.9 | |
393
- | MathVista<sub>testmini</sub> | 58.1 | 57.7 | 63.7 | |
394
 
395
  - 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。MMMU、OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
396
 
@@ -404,7 +436,7 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
404
  | :------------------: | :----: | :------: | :--------------: | :-----------: | :------------------: |
405
  | 模型大小 | - | 34B | 34B | 40B | 76B |
406
  | | | | | | |
407
- | MVBench | - | - | - | 72.5 | |
408
  | Video-MME<br>wo subs | 59.9 | 59.0 | 52.0 | TODO | TODO |
409
  | Video-MME<br>w/ subs | 63.3 | 59.4 | 54.9 | TODO | TODO |
410
 
@@ -422,6 +454,10 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
422
 
423
  示例代码请[点击这里](#quick-start)。
424
 
 
 
 
 
425
  ## 部署
426
 
427
  ### LMDeploy
 
29
  | :--------------------------: | :-------------: | :------------: | :-----------: | :------------------: |
30
  | Model Size | - | - | 40B | 76B |
31
  | | | | | |
32
+ | DocVQA<sub>test</sub> | 87.2 | 86.5 | 93.9 | 94.1 |
33
  | ChartQA<sub>test</sub> | 78.1 | 81.3 | 86.2 | 88.4 |
34
  | InfoVQA<sub>test</sub> | - | 72.7 | 78.7 | 82.0 |
35
  | TextVQA<sub>val</sub> | - | 73.5 | 83.0 | 84.4 |
36
+ | OCRBench | 678 | 754 | 837 | 839 |
37
  | MME<sub>sum</sub> | 2070.2 | 2110.6 | 2315.0 | 2414.7 |
38
+ | RealWorldQA | 68.0 | 67.5 | 71.8 | 72.2 |
39
  | AI2D<sub>test</sub> | 89.4 | 80.3 | 87.1 | 87.6 |
40
+ | MMMU<sub>val</sub> | 63.1 / 61.7 | 58.5 / 60.6 | 53.9 / 55.2 | 55.2 / 58.2 |
41
  | MMBench-EN<sub>test</sub> | 81.0 | 73.9 | 86.8 | 86.5 |
42
  | MMBench-CN<sub>test</sub> | 80.2 | 73.8 | 86.5 | 86.3 |
43
  | CCBench<sub>dev</sub> | 57.3 | 28.4 | 80.6 | 81.0 |
44
  | MMVet<sub>GPT-4-0613</sub> | - | - | 68.5 | 69.8 |
45
+ | MMVet<sub>GPT-4-Turbo</sub> | 67.5 | 64.0 | 65.5 | 65.7 |
46
  | SEED-Image | - | - | 78.2 | 78.2 |
47
+ | HallBench<sub>avg</sub> | 43.9 | 45.6 | 56.9 | 55.2 |
48
+ | MathVista<sub>testmini</sub> | 58.1 | 57.7 | 63.7 | 65.5 |
49
 
50
  - We simultaneously use InternVL and VLMEvalKit repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
51
 
 
59
  | :------------------: | :----: | :------: | :--------------: | :-----------: | :------------------: |
60
  | Model Size | - | 34B | 34B | 40B | 76B |
61
  | | | | | | |
62
+ | MVBench | - | - | - | 72.5 | 69.6 |
63
  | Video-MME<br>wo subs | 59.9 | 59.0 | 52.0 | TODO | TODO |
64
  | Video-MME<br>w/ subs | 63.3 | 59.4 | 54.9 | TODO | TODO |
65
 
 
76
  > Please use transformers==4.37.2 to ensure the model works normally.
77
 
78
  ```python
79
+ import math
80
  import numpy as np
81
  import torch
82
  import torchvision.transforms as T
 
164
  return pixel_values
165
 
166
 
167
+ def split_model(model_name):
168
+ device_map = {}
169
+ world_size = torch.cuda.device_count()
170
+ num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48,
171
+ 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
172
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
173
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
174
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
175
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
176
+ layer_cnt = 0
177
+ for i, num_layer in enumerate(num_layers_per_gpu):
178
+ for j in range(num_layer):
179
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
180
+ layer_cnt += 1
181
+ device_map['vision_model'] = 0
182
+ device_map['mlp1'] = 0
183
+ device_map['language_model.model.tok_embeddings'] = 0
184
+ device_map['language_model.model.embed_tokens'] = 0
185
+ device_map['language_model.output'] = 0
186
+ device_map['language_model.model.norm'] = 0
187
+ device_map['language_model.lm_head'] = 0
188
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
189
+
190
+ return device_map
191
+
192
+
193
  path = 'OpenGVLab/InternVL2-Llama3-76B'
194
+ device_map = split_model('InternVL2-Llama3-76B')
195
+ print(device_map)
196
+ # If you set `load_in_8bit=True`, you will need two 80GB GPUs.
197
+ # If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
198
  model = AutoModel.from_pretrained(
199
  path,
200
  torch_dtype=torch.bfloat16,
201
+ load_in_8bit=True,
202
  low_cpu_mem_usage=True,
203
  trust_remote_code=True,
204
+ device_map=device_map).eval()
 
205
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
206
  # set the max number of tiles in `max_num`
207
  pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
 
345
  print(f'Assistant: {response}')
346
  ```
347
 
348
+ ## Finetune
349
+
350
+ SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of InternVL, please check [this link](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md) for more details.
351
+
352
  ## Deployment
353
 
354
  ### LMDeploy
 
406
  | :--------------------------: | :-------------: | :------------: | :-----------: | :------------------: |
407
  | 模型大小 | - | - | 40B | 76B |
408
  | | | | | |
409
+ | DocVQA<sub>test</sub> | 87.2 | 86.5 | 93.9 | 94.1 |
410
+ | ChartQA<sub>test</sub> | 78.1 | 81.3 | 86.2 | 88.4 |
411
+ | InfoVQA<sub>test</sub> | - | 72.7 | 78.7 | 82.0 |
412
+ | TextVQA<sub>val</sub> | - | 73.5 | 83.0 | 84.4 |
413
+ | OCRBench | 678 | 754 | 837 | 839 |
414
+ | MME<sub>sum</sub> | 2070.2 | 2110.6 | 2315.0 | 2414.7 |
415
+ | RealWorldQA | 68.0 | 67.5 | 71.8 | 72.2 |
416
+ | AI2D<sub>test</sub> | 89.4 | 80.3 | 87.1 | 87.6 |
417
+ | MMMU<sub>val</sub> | 63.1 / 61.7 | 58.5 / 60.6 | 53.9 / 55.2 | 55.2 / 58.2 |
418
+ | MMBench-EN<sub>test</sub> | 81.0 | 73.9 | 86.8 | 86.5 |
419
+ | MMBench-CN<sub>test</sub> | 80.2 | 73.8 | 86.5 | 86.3 |
420
+ | CCBench<sub>dev</sub> | 57.3 | 28.4 | 80.6 | 81.0 |
421
+ | MMVet<sub>GPT-4-0613</sub> | - | - | 68.5 | 69.8 |
422
+ | MMVet<sub>GPT-4-Turbo</sub> | 67.5 | 64.0 | 65.5 | 65.7 |
423
+ | SEED-Image | - | - | 78.2 | 78.2 |
424
+ | HallBench<sub>avg</sub> | 43.9 | 45.6 | 56.9 | 55.2 |
425
+ | MathVista<sub>testmini</sub> | 58.1 | 57.7 | 63.7 | 65.5 |
426
 
427
  - 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。MMMU、OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
428
 
 
436
  | :------------------: | :----: | :------: | :--------------: | :-----------: | :------------------: |
437
  | 模型大小 | - | 34B | 34B | 40B | 76B |
438
  | | | | | | |
439
+ | MVBench | - | - | - | 72.5 | 69.6 |
440
  | Video-MME<br>wo subs | 59.9 | 59.0 | 52.0 | TODO | TODO |
441
  | Video-MME<br>w/ subs | 63.3 | 59.4 | 54.9 | TODO | TODO |
442
 
 
454
 
455
  示例代码请[点击这里](#quick-start)。
456
 
457
+ ## 微调
458
+
459
+ 来自ModelScope社区的SWIFT已经支持对InternVL进行微调(图像/视频),详情请查看[此链接](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md)。
460
+
461
  ## 部署
462
 
463
  ### LMDeploy