Upload folder using huggingface_hub
Browse files- README.md +28 -91
- modeling_intern_vit.py +6 -12
README.md
CHANGED
@@ -62,6 +62,8 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
|
|
62 |
| MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
|
63 |
| OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
|
64 |
|
|
|
|
|
65 |
- We simultaneously use InternVL and VLMEvalKit repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
|
66 |
|
67 |
- For MMMU, we report both the original scores (left side: evaluated using the InternVL codebase for InternVL series models, and sourced from technical reports or webpages for other models) and the VLMEvalKit scores (right side: collected from the OpenCompass leaderboard).
|
@@ -300,7 +302,7 @@ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast
|
|
300 |
|
301 |
# set the max number of tiles in `max_num`
|
302 |
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
303 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
304 |
|
305 |
# pure-text conversation (纯文本对话)
|
306 |
question = 'Hello, who are you?'
|
@@ -452,7 +454,7 @@ for new_text in streamer:
|
|
452 |
|
453 |
## Finetune
|
454 |
|
455 |
-
|
456 |
|
457 |
## Deployment
|
458 |
|
@@ -461,7 +463,7 @@ SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of I
|
|
461 |
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
462 |
|
463 |
```sh
|
464 |
-
pip install lmdeploy
|
465 |
```
|
466 |
|
467 |
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
@@ -469,16 +471,12 @@ LMDeploy abstracts the complex inference process of multi-modal Vision-Language
|
|
469 |
#### A 'Hello, world' example
|
470 |
|
471 |
```python
|
472 |
-
from lmdeploy import pipeline,
|
473 |
from lmdeploy.vl import load_image
|
474 |
|
475 |
model = 'OpenGVLab/InternVL2-4B'
|
476 |
-
system_prompt = '我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。'
|
477 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
478 |
-
|
479 |
-
chat_template_config.meta_instruction = system_prompt
|
480 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
481 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
482 |
response = pipe(('describe this image', image))
|
483 |
print(response.text)
|
484 |
```
|
@@ -492,16 +490,12 @@ When dealing with multiple images, you can put them all in one list. Keep in min
|
|
492 |
> Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
|
493 |
|
494 |
```python
|
495 |
-
from lmdeploy import pipeline,
|
496 |
from lmdeploy.vl import load_image
|
497 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
498 |
|
499 |
model = 'OpenGVLab/InternVL2-4B'
|
500 |
-
|
501 |
-
chat_template_config = ChatTemplateConfig('internvl-phi3')
|
502 |
-
chat_template_config.meta_instruction = system_prompt
|
503 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
504 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
505 |
|
506 |
image_urls=[
|
507 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
@@ -519,15 +513,11 @@ print(response.text)
|
|
519 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
520 |
|
521 |
```python
|
522 |
-
from lmdeploy import pipeline,
|
523 |
from lmdeploy.vl import load_image
|
524 |
|
525 |
model = 'OpenGVLab/InternVL2-4B'
|
526 |
-
|
527 |
-
chat_template_config = ChatTemplateConfig('internvl-phi3')
|
528 |
-
chat_template_config.meta_instruction = system_prompt
|
529 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
530 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
531 |
|
532 |
image_urls=[
|
533 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
@@ -543,15 +533,11 @@ print(response)
|
|
543 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
544 |
|
545 |
```python
|
546 |
-
from lmdeploy import pipeline,
|
547 |
from lmdeploy.vl import load_image
|
548 |
|
549 |
model = 'OpenGVLab/InternVL2-4B'
|
550 |
-
|
551 |
-
chat_template_config = ChatTemplateConfig('internvl-phi3')
|
552 |
-
chat_template_config.meta_instruction = system_prompt
|
553 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
554 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
555 |
|
556 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
557 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
@@ -563,20 +549,10 @@ print(sess.response.text)
|
|
563 |
|
564 |
#### Service
|
565 |
|
566 |
-
To deploy InternVL2 as an API, please configure the chat template config first. Create the following JSON file `chat_template.json`.
|
567 |
-
|
568 |
-
```json
|
569 |
-
{
|
570 |
-
"model_name":"internlm2-phi3",
|
571 |
-
"meta_instruction":"我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。",
|
572 |
-
"stop_words":["<|end|>"]
|
573 |
-
}
|
574 |
-
```
|
575 |
-
|
576 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
577 |
|
578 |
```shell
|
579 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend
|
580 |
```
|
581 |
|
582 |
To use the OpenAI-style interface, you need to install OpenAI:
|
@@ -613,14 +589,6 @@ response = client.chat.completions.create(
|
|
613 |
print(response)
|
614 |
```
|
615 |
|
616 |
-
### vLLM
|
617 |
-
|
618 |
-
TODO
|
619 |
-
|
620 |
-
### Ollama
|
621 |
-
|
622 |
-
TODO
|
623 |
-
|
624 |
## License
|
625 |
|
626 |
This project is released under the MIT license.
|
@@ -693,6 +661,8 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
693 |
| MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
|
694 |
| OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
|
695 |
|
|
|
|
|
696 |
- 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
|
697 |
|
698 |
- 对于MMMU,我们报告了原始分数(左侧:InternVL系列模型使用InternVL代码库评测,其他模型的分数来自其技术报告或网页)和VLMEvalKit分数(右侧:从OpenCompass排行榜收集)。
|
@@ -751,7 +721,7 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
751 |
|
752 |
## 微调
|
753 |
|
754 |
-
|
755 |
|
756 |
## 部署
|
757 |
|
@@ -760,7 +730,7 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
760 |
LMDeploy 是由 MMRazor 和 MMDeploy 团队开发的用于压缩、部署和服务大语言模型(LLM)的工具包。
|
761 |
|
762 |
```sh
|
763 |
-
pip install lmdeploy
|
764 |
```
|
765 |
|
766 |
LMDeploy 将多模态视觉-语言模型(VLM)的复杂推理过程抽象为一个易于使用的管道,类似于大语言模型(LLM���的推理管道。
|
@@ -768,16 +738,12 @@ LMDeploy 将多模态视觉-语言模型(VLM)的复杂推理过程抽象为
|
|
768 |
#### 一个“你好,世界”示例
|
769 |
|
770 |
```python
|
771 |
-
from lmdeploy import pipeline,
|
772 |
from lmdeploy.vl import load_image
|
773 |
|
774 |
model = 'OpenGVLab/InternVL2-4B'
|
775 |
-
system_prompt = '我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。'
|
776 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
777 |
-
|
778 |
-
chat_template_config.meta_instruction = system_prompt
|
779 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
780 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
781 |
response = pipe(('describe this image', image))
|
782 |
print(response.text)
|
783 |
```
|
@@ -789,16 +755,12 @@ print(response.text)
|
|
789 |
在处理多张图像时,可以将它们全部放入一个列表中。请注意,多张图像会导致输入 token 数量增加,因此通常需要增加上下文窗口的大小。
|
790 |
|
791 |
```python
|
792 |
-
from lmdeploy import pipeline,
|
793 |
from lmdeploy.vl import load_image
|
794 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
795 |
|
796 |
model = 'OpenGVLab/InternVL2-4B'
|
797 |
-
|
798 |
-
chat_template_config = ChatTemplateConfig('internvl-phi3')
|
799 |
-
chat_template_config.meta_instruction = system_prompt
|
800 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
801 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
802 |
|
803 |
image_urls=[
|
804 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
@@ -806,6 +768,7 @@ image_urls=[
|
|
806 |
]
|
807 |
|
808 |
images = [load_image(img_url) for img_url in image_urls]
|
|
|
809 |
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
|
810 |
print(response.text)
|
811 |
```
|
@@ -815,15 +778,11 @@ print(response.text)
|
|
815 |
使用批量Prompt进行推理非常简单;只需将它们放在一个列表结构中:
|
816 |
|
817 |
```python
|
818 |
-
from lmdeploy import pipeline,
|
819 |
from lmdeploy.vl import load_image
|
820 |
|
821 |
model = 'OpenGVLab/InternVL2-4B'
|
822 |
-
|
823 |
-
chat_template_config = ChatTemplateConfig('internvl-phi3')
|
824 |
-
chat_template_config.meta_instruction = system_prompt
|
825 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
826 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
827 |
|
828 |
image_urls=[
|
829 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
@@ -839,15 +798,11 @@ print(response)
|
|
839 |
使用管道进行多轮对话有两种方法。一种是根据 OpenAI 的格式构建消息并使用上述方法,另一种是使用 `pipeline.chat` 接口。
|
840 |
|
841 |
```python
|
842 |
-
from lmdeploy import pipeline,
|
843 |
from lmdeploy.vl import load_image
|
844 |
|
845 |
model = 'OpenGVLab/InternVL2-4B'
|
846 |
-
|
847 |
-
chat_template_config = ChatTemplateConfig('internvl-phi3')
|
848 |
-
chat_template_config.meta_instruction = system_prompt
|
849 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
850 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
851 |
|
852 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
853 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
@@ -859,20 +814,10 @@ print(sess.response.text)
|
|
859 |
|
860 |
#### API部署
|
861 |
|
862 |
-
为了将InternVL2部署成API,请先配置聊天模板配置文件。创建如下的 JSON 文件 `chat_template.json`。
|
863 |
-
|
864 |
-
```json
|
865 |
-
{
|
866 |
-
"model_name":"internlm2-phi3",
|
867 |
-
"meta_instruction":"我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。",
|
868 |
-
"stop_words":["<|end|>"]
|
869 |
-
}
|
870 |
-
```
|
871 |
-
|
872 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。��供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
873 |
|
874 |
```shell
|
875 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend
|
876 |
```
|
877 |
|
878 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
@@ -909,14 +854,6 @@ response = client.chat.completions.create(
|
|
909 |
print(response)
|
910 |
```
|
911 |
|
912 |
-
### vLLM
|
913 |
-
|
914 |
-
TODO
|
915 |
-
|
916 |
-
### Ollama
|
917 |
-
|
918 |
-
TODO
|
919 |
-
|
920 |
## 开源许可证
|
921 |
|
922 |
该项目采用 MIT 许可证发布。
|
|
|
62 |
| MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
|
63 |
| OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
|
64 |
|
65 |
+
- For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
|
66 |
+
|
67 |
- We simultaneously use InternVL and VLMEvalKit repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
|
68 |
|
69 |
- For MMMU, we report both the original scores (left side: evaluated using the InternVL codebase for InternVL series models, and sourced from technical reports or webpages for other models) and the VLMEvalKit scores (right side: collected from the OpenCompass leaderboard).
|
|
|
302 |
|
303 |
# set the max number of tiles in `max_num`
|
304 |
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
305 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
306 |
|
307 |
# pure-text conversation (纯文本对话)
|
308 |
question = 'Hello, who are you?'
|
|
|
454 |
|
455 |
## Finetune
|
456 |
|
457 |
+
Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
|
458 |
|
459 |
## Deployment
|
460 |
|
|
|
463 |
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
464 |
|
465 |
```sh
|
466 |
+
pip install lmdeploy==0.5.3
|
467 |
```
|
468 |
|
469 |
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
|
|
471 |
#### A 'Hello, world' example
|
472 |
|
473 |
```python
|
474 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
475 |
from lmdeploy.vl import load_image
|
476 |
|
477 |
model = 'OpenGVLab/InternVL2-4B'
|
|
|
478 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
479 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
480 |
response = pipe(('describe this image', image))
|
481 |
print(response.text)
|
482 |
```
|
|
|
490 |
> Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
|
491 |
|
492 |
```python
|
493 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
494 |
from lmdeploy.vl import load_image
|
495 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
496 |
|
497 |
model = 'OpenGVLab/InternVL2-4B'
|
498 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
|
|
499 |
|
500 |
image_urls=[
|
501 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
|
|
513 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
514 |
|
515 |
```python
|
516 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
517 |
from lmdeploy.vl import load_image
|
518 |
|
519 |
model = 'OpenGVLab/InternVL2-4B'
|
520 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
|
|
521 |
|
522 |
image_urls=[
|
523 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
|
|
533 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
534 |
|
535 |
```python
|
536 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
537 |
from lmdeploy.vl import load_image
|
538 |
|
539 |
model = 'OpenGVLab/InternVL2-4B'
|
540 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
|
|
541 |
|
542 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
543 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
|
|
549 |
|
550 |
#### Service
|
551 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
553 |
|
554 |
```shell
|
555 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend turbomind --server-port 23333
|
556 |
```
|
557 |
|
558 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
589 |
print(response)
|
590 |
```
|
591 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
## License
|
593 |
|
594 |
This project is released under the MIT license.
|
|
|
661 |
| MathVista<sub>testmini</sub> | 28.7 | 44.5 | 53.7 | 58.6 |
|
662 |
| OpenCompass<sub>avg</sub> | 46.6 | 53.6 | 56.2 | 60.6 |
|
663 |
|
664 |
+
- 关于更多的细节以及评测复现,请看我们的[评测指南](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html)。
|
665 |
+
|
666 |
- 我们同时使用 InternVL 和 VLMEvalKit 仓库进行模型评估。具体来说,DocVQA、ChartQA、InfoVQA、TextVQA、MME、AI2D、MMBench、CCBench、MMVet 和 SEED-Image 的结果是使用 InternVL 仓库测试的。OCRBench、RealWorldQA、HallBench 和 MathVista 是使用 VLMEvalKit 进行评估的。
|
667 |
|
668 |
- 对于MMMU,我们报告了原始分数(左侧:InternVL系列模型使用InternVL代码库评测,其他模型的分数来自其技术报告或网页)和VLMEvalKit分数(右侧:从OpenCompass排行榜收集)。
|
|
|
721 |
|
722 |
## 微调
|
723 |
|
724 |
+
许多仓库现在都支持 InternVL 系列模型的微调,包括 [InternVL](https://github.com/OpenGVLab/InternVL)、[SWIFT](https://github.com/modelscope/ms-swift)、[XTurner](https://github.com/InternLM/xtuner) 等。请参阅它们的文档以获取更多微调细节。
|
725 |
|
726 |
## 部署
|
727 |
|
|
|
730 |
LMDeploy 是由 MMRazor 和 MMDeploy 团队开发的用于压缩、部署和服务大语言模型(LLM)的工具包。
|
731 |
|
732 |
```sh
|
733 |
+
pip install lmdeploy==0.5.3
|
734 |
```
|
735 |
|
736 |
LMDeploy 将多模态视觉-语言模型(VLM)的复杂推理过程抽象为一个易于使用的管道,类似于大语言模型(LLM���的推理管道。
|
|
|
738 |
#### 一个“你好,世界”示例
|
739 |
|
740 |
```python
|
741 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
742 |
from lmdeploy.vl import load_image
|
743 |
|
744 |
model = 'OpenGVLab/InternVL2-4B'
|
|
|
745 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
746 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
747 |
response = pipe(('describe this image', image))
|
748 |
print(response.text)
|
749 |
```
|
|
|
755 |
在处理多张图像时,可以将它们全部放入一个列表中。请注意,多张图像会导致输入 token 数量增加,因此通常需要增加上下文窗口的大小。
|
756 |
|
757 |
```python
|
758 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
759 |
from lmdeploy.vl import load_image
|
760 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
761 |
|
762 |
model = 'OpenGVLab/InternVL2-4B'
|
763 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
|
|
764 |
|
765 |
image_urls=[
|
766 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
|
|
768 |
]
|
769 |
|
770 |
images = [load_image(img_url) for img_url in image_urls]
|
771 |
+
# Numbering images improves multi-image conversations
|
772 |
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
|
773 |
print(response.text)
|
774 |
```
|
|
|
778 |
使用批量Prompt进行推理非常简单;只需将它们放在一个列表结构中:
|
779 |
|
780 |
```python
|
781 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
782 |
from lmdeploy.vl import load_image
|
783 |
|
784 |
model = 'OpenGVLab/InternVL2-4B'
|
785 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
|
|
786 |
|
787 |
image_urls=[
|
788 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
|
|
798 |
使用管道进行多轮对话有两种方法。一种是根据 OpenAI 的格式构建消息并使用上述方法,另一种是使用 `pipeline.chat` 接口。
|
799 |
|
800 |
```python
|
801 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
802 |
from lmdeploy.vl import load_image
|
803 |
|
804 |
model = 'OpenGVLab/InternVL2-4B'
|
805 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
|
|
|
|
806 |
|
807 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
808 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
|
|
814 |
|
815 |
#### API部署
|
816 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
817 |
LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。��供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
|
818 |
|
819 |
```shell
|
820 |
+
lmdeploy serve api_server OpenGVLab/InternVL2-4B --backend turbomind --server-port 23333
|
821 |
```
|
822 |
|
823 |
为了使用OpenAI风格的API接口,您需要安装OpenAI:
|
|
|
854 |
print(response)
|
855 |
```
|
856 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
857 |
## 开源许可证
|
858 |
|
859 |
该项目采用 MIT 许可证发布。
|
modeling_intern_vit.py
CHANGED
@@ -20,18 +20,12 @@ from transformers.utils import logging
|
|
20 |
from .configuration_intern_vit import InternVisionConfig
|
21 |
|
22 |
try:
|
23 |
-
try: # v1
|
24 |
-
from flash_attn.flash_attn_interface import \
|
25 |
-
flash_attn_unpadded_qkvpacked_func
|
26 |
-
except: # v2
|
27 |
-
from flash_attn.flash_attn_interface import \
|
28 |
-
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
29 |
-
|
30 |
from flash_attn.bert_padding import pad_input, unpad_input
|
31 |
-
|
|
|
32 |
has_flash_attn = True
|
33 |
except:
|
34 |
-
print('
|
35 |
has_flash_attn = False
|
36 |
|
37 |
logger = logging.get_logger(__name__)
|
@@ -74,7 +68,7 @@ class FlashAttention(nn.Module):
|
|
74 |
max_s = seqlen
|
75 |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
76 |
device=qkv.device)
|
77 |
-
output =
|
78 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
79 |
softmax_scale=self.softmax_scale, causal=causal
|
80 |
)
|
@@ -84,7 +78,7 @@ class FlashAttention(nn.Module):
|
|
84 |
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
85 |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
86 |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
87 |
-
output_unpad =
|
88 |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
89 |
softmax_scale=self.softmax_scale, causal=causal
|
90 |
)
|
@@ -93,7 +87,7 @@ class FlashAttention(nn.Module):
|
|
93 |
'b s (h d) -> b s h d', h=nheads)
|
94 |
else:
|
95 |
assert max_s is not None
|
96 |
-
output =
|
97 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
98 |
softmax_scale=self.softmax_scale, causal=causal
|
99 |
)
|
|
|
20 |
from .configuration_intern_vit import InternVisionConfig
|
21 |
|
22 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
from flash_attn.bert_padding import pad_input, unpad_input
|
24 |
+
from flash_attn.flash_attn_interface import \
|
25 |
+
flash_attn_varlen_qkvpacked_func
|
26 |
has_flash_attn = True
|
27 |
except:
|
28 |
+
print('FlashAttention2 is not installed.')
|
29 |
has_flash_attn = False
|
30 |
|
31 |
logger = logging.get_logger(__name__)
|
|
|
68 |
max_s = seqlen
|
69 |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
70 |
device=qkv.device)
|
71 |
+
output = flash_attn_varlen_qkvpacked_func(
|
72 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
73 |
softmax_scale=self.softmax_scale, causal=causal
|
74 |
)
|
|
|
78 |
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
79 |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
80 |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
81 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
82 |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
83 |
softmax_scale=self.softmax_scale, causal=causal
|
84 |
)
|
|
|
87 |
'b s (h d) -> b s h d', h=nheads)
|
88 |
else:
|
89 |
assert max_s is not None
|
90 |
+
output = flash_attn_varlen_qkvpacked_func(
|
91 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
92 |
softmax_scale=self.softmax_scale, causal=causal
|
93 |
)
|