File size: 22,582 Bytes
da95d72
 
472fa3c
b67fbed
ffcc6f0
b67fbed
4a0c918
b67fbed
 
 
 
 
 
 
 
 
 
da95d72
c38a7fe
072535f
c38a7fe
472fa3c
0fdcbd7
710b0b5
c38a7fe
472fa3c
ccc6078
472fa3c
b67fbed
472fa3c
 
2575015
472fa3c
ccc6078
ba9fdff
 
 
c38a7fe
472fa3c
 
 
 
 
 
 
 
 
 
 
 
c38a7fe
472fa3c
0f3cf67
472fa3c
c38a7fe
472fa3c
c1d4ea1
 
f564018
c38a7fe
 
472fa3c
b67fbed
 
0f3cf67
b67fbed
 
 
0f3cf67
c38a7fe
472fa3c
 
2575015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472fa3c
ba9fdff
 
472fa3c
ccc339e
472fa3c
ccc339e
af349a9
ccc339e
472fa3c
ccc339e
472fa3c
ccc339e
472fa3c
c38a7fe
472fa3c
 
712b352
472fa3c
 
 
 
 
db1d413
472fa3c
 
c38a7fe
472fa3c
 
 
 
712b352
472fa3c
 
 
 
 
 
db1d413
472fa3c
 
 
 
 
 
869e5e3
472fa3c
 
 
5918d23
c38a7fe
472fa3c
d1a7f0a
05b2052
472fa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1d413
472fa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1d413
472fa3c
75bf5ed
472fa3c
39f98c9
472fa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a7f0a
472fa3c
d1a7f0a
1bbed45
d1a7f0a
 
 
 
db1d413
8d39eda
75bf5ed
472fa3c
d1a7f0a
472fa3c
 
d1a7f0a
39f98c9
472fa3c
 
 
 
 
d1a7f0a
472fa3c
d1a7f0a
472fa3c
 
 
 
 
 
 
 
 
 
db1d413
472fa3c
75bf5ed
472fa3c
 
 
 
fed2e7c
39f98c9
472fa3c
fed2e7c
472fa3c
 
0348b61
472fa3c
fed2e7c
472fa3c
 
c38a7fe
da92483
472fa3c
da92483
472fa3c
b46dbcf
472fa3c
 
 
 
da92483
472fa3c
 
 
 
 
db1d413
472fa3c
75bf5ed
da92483
472fa3c
 
 
 
 
 
 
39f98c9
472fa3c
 
 
 
 
 
 
 
 
 
 
 
9d90772
472fa3c
9d90772
472fa3c
e2a1dc7
472fa3c
 
 
 
 
 
 
 
 
 
db1d413
472fa3c
75bf5ed
472fa3c
 
 
 
 
 
 
 
 
39f98c9
472fa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1d413
472fa3c
75bf5ed
472fa3c
 
 
 
 
 
 
 
 
39f98c9
472fa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1d413
472fa3c
75bf5ed
472fa3c
39f98c9
472fa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bf5ed
472fa3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a1dc7
c38a7fe
 
06d367c
c38a7fe
 
 
 
 
 
 
 
a735595
 
 
 
 
 
c38a7fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - OpenGVLab/InternViT-6B-448px-V1-0
  - meta-llama/Llama-2-13b-hf
base_model_relation: merge
language:
  - multilingual
tags:
  - internvl
  - vision
  - ocr
  - multi-image
  - video
  - custom_code
---

# InternVL-Chat-V1-1

[\[๐Ÿ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[๐Ÿ†• Blog\]](https://internvl.github.io/blog/)  [\[๐Ÿ“œ InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)  [\[๐Ÿ“œ InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)

[\[๐Ÿ—จ๏ธ Chat Demo\]](https://internvl.opengvlab.com/)  [\[๐Ÿค— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[๐Ÿš€ Quick Start\]](#quick-start)  [\[๐Ÿ“– ไธญๆ–‡่งฃ่ฏป\]](https://zhuanlan.zhihu.com/p/706547971)  [\[๐Ÿ“– Documents\]](https://internvl.readthedocs.io/en/latest/)

## Introduction

We released [๐Ÿค— InternVL-Chat-V1-1](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1), featuring a structure similar to LLaVA, including a ViT, an MLP projector, and an LLM.
As shown in the figure below, we connected our [InternViT-6B](https://huggingface.co/OpenGVLab/InternViT-6B-448px) to LLaMA2-13B through a simple MLP projector. Note that the LLaMA2-13B used here is not the original model but an internal chat version obtained by incrementally pre-training and fine-tuning the LLaMA2-13B base model for Chinese language tasks. Overall, our model has a total of 19 billion parameters.

<p align="center">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/HD29tU-g0An9FpQn1yK8X.png" style="width: 100%;">
</p>

In this version, we explored increasing the resolution to 448 ร— 448, enhancing OCR capabilities, and improving support for Chinese conversations. Since the 448 ร— 448 input image generates 1024 visual tokens after passing through the ViT, leading to a significant computational burden, we use a pixel shuffle (unshuffle) operation to reduce the 1024 tokens to 256 tokens.

For more detailed information about this model, please read our [blog](https://internvl.github.io/blog/2024-01-24-InternVL-1.1/).

## Examples

In this update, InternVL-Chat has **improved support for Chinese and OCR**.

As you can see, although the Lynyrd Skynyrd in the image has some letters that are out of the camera's lens, and TOUR's T is blocked, the model is still able to recognize it correctly.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/-jQ8jCctx1VjkzVxzChQa.png)

This model can also conduct an in-depth analysis of AAAI's official website and identify important information on the web page.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/08W04RdT3PmzJuGwFU3--.png)

## Model Details

- **Model Type:** multimodal large language model (MLLM)

- **Model Stats:**

  - Architecture: [InternViT-6B-448px](https://huggingface.co/OpenGVLab/InternViT-6B-448px) + MLP + LLaMA2-13B (Our internal SFT versions)
  - Image size: 448 x 448 (256 tokens)
  - Params: 19B

- **Training Strategy:**

  - Pre-training Stage
    - Learnable Component: ViT + MLP
    - Data: Trained on 72M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR-related datasets.
    - Note: In this stage, we load the pretrained weights of the original [InternViT-6B-224px](https://huggingface.co/OpenGVLab/InternViT-6B-224px) and interpolate its position embedding to the size corresponding to 448 x 448 pixels. Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle (unshuffle) operation to reduce 1024 tokens to 256 tokens.
  - Supervised Fine-tuning Stage
    - Learnable Component: MLP + LLM
    - Data: A comprehensive collection of open-source datasets, along with their Chinese translation versions, totaling approximately 6M samples.

## Performance

|             model              |  LLaVA-1.5   | InternVL-Chat<br>-V1-0 | InternVL-Chat<br>-V1-0 | InternVL-Chat<br>-V1-1 |
| :----------------------------: | :----------: | :--------------------: | :--------------------: | :--------------------: |
|           resolution           |     336      |          336           |          448           |          448           |
|         vision encoder         | CLIP-L-336px |   InternViT-6B-224px   |   InternViT-6B-448px   |   InternViT-6B-448px   |
|         language model         |  Vicuna-13B  |       Vicuna-13B       |       Vicuna-13B       |       LLaMA2-13B       |
|                                |              |                        |                        |                        |
|    VQAv2<sub>testdev</sub>     |     80.0     |          80.2          |          82.0          |          80.9          |
|     GQA<sub>testdev</sub>      |     63.3     |          63.9          |          64.1          |          62.5          |
|     VizWiz<sub>test</sub>      |     53.6     |          54.6          |          60.1          |          57.3          |
|       SQA<sub>test</sub>       |     71.6     |          70.1          |          71.6          |          90.1          |
| TextVQA<sub>val, w/o OCR</sub> |      -       |           -            |           -            |          64.2          |
| TextVQA<sub>val, w/ OCR</sub>  |     61.3     |          58.7          |          64.8          |          68.6          |
|              POPE              |     85.9     |          87.1          |          87.2          |          87.1          |
|    MME<sub>perception</sub>    |    1531.3    |         1546.9         |         1579.0         |         1659.8         |
|     MMB-EN<sub>test</sub>      |     67.7     |          66.5          |          68.2          |          75.4          |
|     MMB-CN<sub>test</sub>      |     63.6     |          61.9          |          64.0          |          70.3          |
|   MMVet<sub>GPT-4-0613</sub>   |     35.4     |          33.7          |          36.7          |          46.7          |

- Note that we use the [official evaluation server](https://huggingface.co/spaces/whyu/MM-Vet_Evaluator) to test the MMVet scores, with `GPT-4-0613` serving as the judge model. Using different versions of GPT-4 as the judge can result in significant score variations.

## Quick Start

We provide an example code to run InternVL-Chat-V1-1 using `transformers`.

We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).

> Please use transformers==4.37.2 to ensure the model works normally.

### Model Loading

#### 16-bit (bf16 / fp16)

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
```

#### BNB 8-bit Quantization

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=True,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval()
```

#### BNB 4-bit Quantization

> **โš ๏ธ Warning:** Due to significant quantization errors with BNB 4-bit quantization on InternViT-6B, the model may produce nonsensical outputs and fail to understand images. Therefore, please avoid using BNB 4-bit quantization.

#### Multiple GPUs

The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.

```python
import math
import torch
from transformers import AutoTokenizer, AutoModel

def split_model(model_name):
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = {'InternVL-Chat-V1-1': 40}[model_name]
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.lm_head'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map

path = "OpenGVLab/InternVL-Chat-V1-1"
device_map = split_model('InternVL-Chat-V1-1')
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map=device_map).eval()
```

### Inference with Transformers

#### Pure-text conversation

```python
from transformers import AutoTokenizer, AutoModel
import torch

path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Single-image single-round conversation

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Single-image multi-round conversation

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Multi-image multi-round conversation, combined images

> **โš ๏ธ๏ธ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Multi-image multi-round conversation, separate images

> **โš ๏ธ๏ธ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Batch inference, single image per sample

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

generation_config = dict(max_new_tokens=1024, do_sample=True)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
                             num_patches_list=num_patches_list,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(f'User: {question}')
    print(f'Assistant: {response}')
```

#### Video multi-round conversation

> **โš ๏ธ๏ธ Warning:** Please note that for this model, we support video chat in the interface, but the results are not very good due to the lack of training with video data.

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import torch


def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    image_processor = CLIPImageProcessor.from_pretrained(path)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB').resize((448, 448))
        pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list


path = "OpenGVLab/InternVL-Chat-V1-1"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

generation_config = dict(max_new_tokens=1024, do_sample=True)

video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Streaming output

Besides this method, you can also use the following code to get streamed output.

```python
from transformers import TextIteratorStreamer
from threading import Thread

# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
    tokenizer=tokenizer, pixel_values=pixel_values, question=question,
    history=None, return_history=False, generation_config=generation_config,
))
thread.start()

# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
    if new_text == model.conv_template.sep:
        break
    generated_text += new_text
    print(new_text, end='', flush=True)  # Print each new chunk of generated text on the same line
```

## License

This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
```