Nugrahasetyaardi
commited on
Commit
•
d8e93a1
1
Parent(s):
ab72a46
Model save
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
- Accuracy: 0.7667
|
22 |
|
23 |
## Model description
|
@@ -38,11 +38,11 @@ More information needed
|
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
- learning_rate: 3e-05
|
41 |
-
- train_batch_size:
|
42 |
-
- eval_batch_size:
|
43 |
- seed: 42
|
44 |
- gradient_accumulation_steps: 4
|
45 |
-
- total_train_batch_size:
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -50,168 +50,208 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch
|
54 |
-
|
55 |
-
| No log | 0
|
56 |
-
| No log |
|
57 |
-
|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.0002 |
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.0002 |
|
162 |
-
| 0.0002 | 108.0
|
163 |
-
| 0.0002 |
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.0002 |
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.0002 |
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.0002 |
|
200 |
-
| 0.0002 |
|
201 |
-
| 0.0002 |
|
202 |
-
| 0.0002 | 148.0
|
203 |
-
| 0.0002 |
|
204 |
-
| 0.0002 |
|
205 |
-
| 0.0002 |
|
206 |
-
| 0.
|
207 |
-
| 0.
|
208 |
-
| 0.
|
209 |
-
| 0.
|
210 |
-
| 0.
|
211 |
-
| 0.
|
212 |
-
| 0.
|
213 |
-
| 0.
|
214 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
|
217 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.9415
|
21 |
- Accuracy: 0.7667
|
22 |
|
23 |
## Model description
|
|
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
- seed: 42
|
44 |
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 128
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| No log | 1.0 | 2 | 2.2720 | 0.7667 |
|
56 |
+
| No log | 2.0 | 4 | 2.2841 | 0.7667 |
|
57 |
+
| No log | 3.0 | 6 | 2.3201 | 0.75 |
|
58 |
+
| No log | 4.0 | 8 | 2.2883 | 0.7667 |
|
59 |
+
| 0.0046 | 5.0 | 10 | 2.2350 | 0.7667 |
|
60 |
+
| 0.0046 | 6.0 | 12 | 2.0393 | 0.7667 |
|
61 |
+
| 0.0046 | 7.0 | 14 | 1.9176 | 0.7833 |
|
62 |
+
| 0.0046 | 8.0 | 16 | 1.9143 | 0.7833 |
|
63 |
+
| 0.0046 | 9.0 | 18 | 1.9518 | 0.7833 |
|
64 |
+
| 0.0002 | 10.0 | 20 | 2.0304 | 0.7667 |
|
65 |
+
| 0.0002 | 11.0 | 22 | 2.1647 | 0.7667 |
|
66 |
+
| 0.0002 | 12.0 | 24 | 2.3829 | 0.75 |
|
67 |
+
| 0.0002 | 13.0 | 26 | 2.4942 | 0.75 |
|
68 |
+
| 0.0002 | 14.0 | 28 | 2.5029 | 0.75 |
|
69 |
+
| 0.004 | 15.0 | 30 | 2.7458 | 0.7 |
|
70 |
+
| 0.004 | 16.0 | 32 | 2.7783 | 0.7 |
|
71 |
+
| 0.004 | 17.0 | 34 | 2.6600 | 0.7333 |
|
72 |
+
| 0.004 | 18.0 | 36 | 2.7163 | 0.7 |
|
73 |
+
| 0.004 | 19.0 | 38 | 2.2924 | 0.75 |
|
74 |
+
| 0.0147 | 20.0 | 40 | 2.2494 | 0.7667 |
|
75 |
+
| 0.0147 | 21.0 | 42 | 2.4246 | 0.7333 |
|
76 |
+
| 0.0147 | 22.0 | 44 | 2.6887 | 0.7167 |
|
77 |
+
| 0.0147 | 23.0 | 46 | 2.5264 | 0.7 |
|
78 |
+
| 0.0147 | 24.0 | 48 | 2.3179 | 0.75 |
|
79 |
+
| 0.0271 | 25.0 | 50 | 2.1745 | 0.7667 |
|
80 |
+
| 0.0271 | 26.0 | 52 | 2.0277 | 0.8 |
|
81 |
+
| 0.0271 | 27.0 | 54 | 2.2430 | 0.75 |
|
82 |
+
| 0.0271 | 28.0 | 56 | 2.1641 | 0.7333 |
|
83 |
+
| 0.0271 | 29.0 | 58 | 2.5573 | 0.6833 |
|
84 |
+
| 0.0596 | 30.0 | 60 | 2.9387 | 0.6167 |
|
85 |
+
| 0.0596 | 31.0 | 62 | 3.0547 | 0.6167 |
|
86 |
+
| 0.0596 | 32.0 | 64 | 2.8590 | 0.6 |
|
87 |
+
| 0.0596 | 33.0 | 66 | 3.0040 | 0.6167 |
|
88 |
+
| 0.0596 | 34.0 | 68 | 3.0337 | 0.6 |
|
89 |
+
| 0.05 | 35.0 | 70 | 2.2825 | 0.6667 |
|
90 |
+
| 0.05 | 36.0 | 72 | 1.9014 | 0.7333 |
|
91 |
+
| 0.05 | 37.0 | 74 | 1.8035 | 0.7667 |
|
92 |
+
| 0.05 | 38.0 | 76 | 1.5818 | 0.7833 |
|
93 |
+
| 0.05 | 39.0 | 78 | 1.8626 | 0.75 |
|
94 |
+
| 0.0124 | 40.0 | 80 | 1.7125 | 0.7667 |
|
95 |
+
| 0.0124 | 41.0 | 82 | 1.6466 | 0.7833 |
|
96 |
+
| 0.0124 | 42.0 | 84 | 1.8513 | 0.7333 |
|
97 |
+
| 0.0124 | 43.0 | 86 | 1.8530 | 0.75 |
|
98 |
+
| 0.0124 | 44.0 | 88 | 2.3394 | 0.65 |
|
99 |
+
| 0.0186 | 45.0 | 90 | 2.4217 | 0.65 |
|
100 |
+
| 0.0186 | 46.0 | 92 | 2.1086 | 0.7 |
|
101 |
+
| 0.0186 | 47.0 | 94 | 2.0958 | 0.6833 |
|
102 |
+
| 0.0186 | 48.0 | 96 | 2.0922 | 0.6833 |
|
103 |
+
| 0.0186 | 49.0 | 98 | 2.0835 | 0.7 |
|
104 |
+
| 0.0149 | 50.0 | 100 | 2.0205 | 0.7333 |
|
105 |
+
| 0.0149 | 51.0 | 102 | 1.5263 | 0.8 |
|
106 |
+
| 0.0149 | 52.0 | 104 | 1.4687 | 0.8167 |
|
107 |
+
| 0.0149 | 53.0 | 106 | 1.5307 | 0.7833 |
|
108 |
+
| 0.0149 | 54.0 | 108 | 1.6047 | 0.7833 |
|
109 |
+
| 0.0013 | 55.0 | 110 | 1.7679 | 0.7167 |
|
110 |
+
| 0.0013 | 56.0 | 112 | 1.8846 | 0.75 |
|
111 |
+
| 0.0013 | 57.0 | 114 | 2.3881 | 0.7 |
|
112 |
+
| 0.0013 | 58.0 | 116 | 2.6379 | 0.6833 |
|
113 |
+
| 0.0013 | 59.0 | 118 | 2.7034 | 0.6833 |
|
114 |
+
| 0.0155 | 60.0 | 120 | 2.9447 | 0.65 |
|
115 |
+
| 0.0155 | 61.0 | 122 | 3.2150 | 0.6167 |
|
116 |
+
| 0.0155 | 62.0 | 124 | 3.4130 | 0.6167 |
|
117 |
+
| 0.0155 | 63.0 | 126 | 3.3817 | 0.6333 |
|
118 |
+
| 0.0155 | 64.0 | 128 | 3.3581 | 0.6167 |
|
119 |
+
| 0.0111 | 65.0 | 130 | 2.9241 | 0.6667 |
|
120 |
+
| 0.0111 | 66.0 | 132 | 3.0085 | 0.6667 |
|
121 |
+
| 0.0111 | 67.0 | 134 | 2.8478 | 0.6833 |
|
122 |
+
| 0.0111 | 68.0 | 136 | 2.7320 | 0.6833 |
|
123 |
+
| 0.0111 | 69.0 | 138 | 2.6933 | 0.6833 |
|
124 |
+
| 0.0168 | 70.0 | 140 | 2.9740 | 0.6833 |
|
125 |
+
| 0.0168 | 71.0 | 142 | 3.1446 | 0.65 |
|
126 |
+
| 0.0168 | 72.0 | 144 | 3.2257 | 0.65 |
|
127 |
+
| 0.0168 | 73.0 | 146 | 3.1502 | 0.65 |
|
128 |
+
| 0.0168 | 74.0 | 148 | 3.0858 | 0.6333 |
|
129 |
+
| 0.0187 | 75.0 | 150 | 2.7265 | 0.6667 |
|
130 |
+
| 0.0187 | 76.0 | 152 | 2.5229 | 0.7 |
|
131 |
+
| 0.0187 | 77.0 | 154 | 2.3222 | 0.7167 |
|
132 |
+
| 0.0187 | 78.0 | 156 | 2.3554 | 0.7 |
|
133 |
+
| 0.0187 | 79.0 | 158 | 2.3848 | 0.7 |
|
134 |
+
| 0.0018 | 80.0 | 160 | 2.3766 | 0.7 |
|
135 |
+
| 0.0018 | 81.0 | 162 | 2.3308 | 0.7 |
|
136 |
+
| 0.0018 | 82.0 | 164 | 2.1257 | 0.7333 |
|
137 |
+
| 0.0018 | 83.0 | 166 | 2.1291 | 0.75 |
|
138 |
+
| 0.0018 | 84.0 | 168 | 2.1757 | 0.7333 |
|
139 |
+
| 0.0065 | 85.0 | 170 | 2.3008 | 0.75 |
|
140 |
+
| 0.0065 | 86.0 | 172 | 2.3024 | 0.75 |
|
141 |
+
| 0.0065 | 87.0 | 174 | 2.2877 | 0.75 |
|
142 |
+
| 0.0065 | 88.0 | 176 | 2.2673 | 0.75 |
|
143 |
+
| 0.0065 | 89.0 | 178 | 2.3754 | 0.7167 |
|
144 |
+
| 0.0214 | 90.0 | 180 | 2.4390 | 0.7 |
|
145 |
+
| 0.0214 | 91.0 | 182 | 2.4341 | 0.7167 |
|
146 |
+
| 0.0214 | 92.0 | 184 | 2.4128 | 0.7167 |
|
147 |
+
| 0.0214 | 93.0 | 186 | 2.3715 | 0.7167 |
|
148 |
+
| 0.0214 | 94.0 | 188 | 2.4491 | 0.7167 |
|
149 |
+
| 0.0376 | 95.0 | 190 | 2.5154 | 0.7167 |
|
150 |
+
| 0.0376 | 96.0 | 192 | 2.2634 | 0.7333 |
|
151 |
+
| 0.0376 | 97.0 | 194 | 2.0648 | 0.7667 |
|
152 |
+
| 0.0376 | 98.0 | 196 | 1.9852 | 0.7667 |
|
153 |
+
| 0.0376 | 99.0 | 198 | 1.9437 | 0.7833 |
|
154 |
+
| 0.0012 | 100.0 | 200 | 2.0033 | 0.7667 |
|
155 |
+
| 0.0012 | 101.0 | 202 | 2.0447 | 0.7667 |
|
156 |
+
| 0.0012 | 102.0 | 204 | 2.0606 | 0.7667 |
|
157 |
+
| 0.0012 | 103.0 | 206 | 2.0550 | 0.7667 |
|
158 |
+
| 0.0012 | 104.0 | 208 | 2.0305 | 0.7667 |
|
159 |
+
| 0.0002 | 105.0 | 210 | 1.9972 | 0.7667 |
|
160 |
+
| 0.0002 | 106.0 | 212 | 1.9731 | 0.7833 |
|
161 |
+
| 0.0002 | 107.0 | 214 | 1.9652 | 0.7833 |
|
162 |
+
| 0.0002 | 108.0 | 216 | 1.9628 | 0.7833 |
|
163 |
+
| 0.0002 | 109.0 | 218 | 1.9216 | 0.7833 |
|
164 |
+
| 0.0016 | 110.0 | 220 | 1.8645 | 0.7833 |
|
165 |
+
| 0.0016 | 111.0 | 222 | 1.8024 | 0.7667 |
|
166 |
+
| 0.0016 | 112.0 | 224 | 1.8894 | 0.75 |
|
167 |
+
| 0.0016 | 113.0 | 226 | 1.9666 | 0.7333 |
|
168 |
+
| 0.0016 | 114.0 | 228 | 2.0447 | 0.7167 |
|
169 |
+
| 0.004 | 115.0 | 230 | 2.0705 | 0.7167 |
|
170 |
+
| 0.004 | 116.0 | 232 | 2.0641 | 0.7167 |
|
171 |
+
| 0.004 | 117.0 | 234 | 2.0470 | 0.7167 |
|
172 |
+
| 0.004 | 118.0 | 236 | 2.0347 | 0.7333 |
|
173 |
+
| 0.004 | 119.0 | 238 | 2.0484 | 0.7333 |
|
174 |
+
| 0.0092 | 120.0 | 240 | 1.9822 | 0.75 |
|
175 |
+
| 0.0092 | 121.0 | 242 | 2.2340 | 0.7333 |
|
176 |
+
| 0.0092 | 122.0 | 244 | 2.5968 | 0.7 |
|
177 |
+
| 0.0092 | 123.0 | 246 | 2.9225 | 0.6833 |
|
178 |
+
| 0.0092 | 124.0 | 248 | 2.9789 | 0.6833 |
|
179 |
+
| 0.0285 | 125.0 | 250 | 2.9706 | 0.6833 |
|
180 |
+
| 0.0285 | 126.0 | 252 | 2.9491 | 0.6833 |
|
181 |
+
| 0.0285 | 127.0 | 254 | 2.8185 | 0.7167 |
|
182 |
+
| 0.0285 | 128.0 | 256 | 2.7680 | 0.7167 |
|
183 |
+
| 0.0285 | 129.0 | 258 | 2.6827 | 0.7167 |
|
184 |
+
| 0.0055 | 130.0 | 260 | 2.5914 | 0.7167 |
|
185 |
+
| 0.0055 | 131.0 | 262 | 2.5078 | 0.7333 |
|
186 |
+
| 0.0055 | 132.0 | 264 | 2.4782 | 0.7167 |
|
187 |
+
| 0.0055 | 133.0 | 266 | 2.4659 | 0.7333 |
|
188 |
+
| 0.0055 | 134.0 | 268 | 2.4607 | 0.7333 |
|
189 |
+
| 0.0002 | 135.0 | 270 | 2.4577 | 0.7167 |
|
190 |
+
| 0.0002 | 136.0 | 272 | 2.4564 | 0.7167 |
|
191 |
+
| 0.0002 | 137.0 | 274 | 2.4510 | 0.7167 |
|
192 |
+
| 0.0002 | 138.0 | 276 | 2.4595 | 0.7167 |
|
193 |
+
| 0.0002 | 139.0 | 278 | 2.4420 | 0.7167 |
|
194 |
+
| 0.007 | 140.0 | 280 | 2.4052 | 0.7333 |
|
195 |
+
| 0.007 | 141.0 | 282 | 2.3583 | 0.7333 |
|
196 |
+
| 0.007 | 142.0 | 284 | 2.3137 | 0.7333 |
|
197 |
+
| 0.007 | 143.0 | 286 | 2.3157 | 0.7333 |
|
198 |
+
| 0.007 | 144.0 | 288 | 2.3150 | 0.7333 |
|
199 |
+
| 0.0002 | 145.0 | 290 | 2.3049 | 0.7333 |
|
200 |
+
| 0.0002 | 146.0 | 292 | 2.2911 | 0.7333 |
|
201 |
+
| 0.0002 | 147.0 | 294 | 2.3205 | 0.7333 |
|
202 |
+
| 0.0002 | 148.0 | 296 | 2.3684 | 0.7333 |
|
203 |
+
| 0.0002 | 149.0 | 298 | 2.3957 | 0.7333 |
|
204 |
+
| 0.0002 | 150.0 | 300 | 2.4126 | 0.7333 |
|
205 |
+
| 0.0002 | 151.0 | 302 | 2.4218 | 0.7333 |
|
206 |
+
| 0.0002 | 152.0 | 304 | 2.4271 | 0.7333 |
|
207 |
+
| 0.0002 | 153.0 | 306 | 2.4293 | 0.7333 |
|
208 |
+
| 0.0002 | 154.0 | 308 | 2.4310 | 0.7333 |
|
209 |
+
| 0.0001 | 155.0 | 310 | 2.4319 | 0.7333 |
|
210 |
+
| 0.0001 | 156.0 | 312 | 2.4318 | 0.7333 |
|
211 |
+
| 0.0001 | 157.0 | 314 | 2.4318 | 0.7333 |
|
212 |
+
| 0.0001 | 158.0 | 316 | 2.4320 | 0.7333 |
|
213 |
+
| 0.0001 | 159.0 | 318 | 2.4315 | 0.7333 |
|
214 |
+
| 0.0001 | 160.0 | 320 | 2.4326 | 0.7333 |
|
215 |
+
| 0.0001 | 161.0 | 322 | 2.4350 | 0.7333 |
|
216 |
+
| 0.0001 | 162.0 | 324 | 2.4369 | 0.7333 |
|
217 |
+
| 0.0001 | 163.0 | 326 | 2.4525 | 0.7167 |
|
218 |
+
| 0.0001 | 164.0 | 328 | 2.4704 | 0.7167 |
|
219 |
+
| 0.003 | 165.0 | 330 | 2.4740 | 0.7167 |
|
220 |
+
| 0.003 | 166.0 | 332 | 2.4686 | 0.7167 |
|
221 |
+
| 0.003 | 167.0 | 334 | 2.4617 | 0.7167 |
|
222 |
+
| 0.003 | 168.0 | 336 | 2.4549 | 0.7167 |
|
223 |
+
| 0.003 | 169.0 | 338 | 2.4498 | 0.7167 |
|
224 |
+
| 0.0001 | 170.0 | 340 | 2.4439 | 0.7167 |
|
225 |
+
| 0.0001 | 171.0 | 342 | 2.4396 | 0.7167 |
|
226 |
+
| 0.0001 | 172.0 | 344 | 2.4360 | 0.7167 |
|
227 |
+
| 0.0001 | 173.0 | 346 | 2.4340 | 0.7167 |
|
228 |
+
| 0.0001 | 174.0 | 348 | 2.3907 | 0.7167 |
|
229 |
+
| 0.0068 | 175.0 | 350 | 2.3436 | 0.75 |
|
230 |
+
| 0.0068 | 176.0 | 352 | 2.3229 | 0.75 |
|
231 |
+
| 0.0068 | 177.0 | 354 | 2.2971 | 0.75 |
|
232 |
+
| 0.0068 | 178.0 | 356 | 2.2626 | 0.75 |
|
233 |
+
| 0.0068 | 179.0 | 358 | 2.2204 | 0.75 |
|
234 |
+
| 0.0001 | 180.0 | 360 | 2.1756 | 0.75 |
|
235 |
+
| 0.0001 | 181.0 | 362 | 2.1314 | 0.75 |
|
236 |
+
| 0.0001 | 182.0 | 364 | 2.0944 | 0.75 |
|
237 |
+
| 0.0001 | 183.0 | 366 | 2.0457 | 0.75 |
|
238 |
+
| 0.0001 | 184.0 | 368 | 2.0049 | 0.7667 |
|
239 |
+
| 0.0081 | 185.0 | 370 | 1.9810 | 0.75 |
|
240 |
+
| 0.0081 | 186.0 | 372 | 1.9649 | 0.75 |
|
241 |
+
| 0.0081 | 187.0 | 374 | 1.9524 | 0.75 |
|
242 |
+
| 0.0081 | 188.0 | 376 | 1.9434 | 0.75 |
|
243 |
+
| 0.0081 | 189.0 | 378 | 1.9369 | 0.75 |
|
244 |
+
| 0.0003 | 190.0 | 380 | 1.9368 | 0.75 |
|
245 |
+
| 0.0003 | 191.0 | 382 | 1.9369 | 0.75 |
|
246 |
+
| 0.0003 | 192.0 | 384 | 1.9339 | 0.75 |
|
247 |
+
| 0.0003 | 193.0 | 386 | 1.9302 | 0.75 |
|
248 |
+
| 0.0003 | 194.0 | 388 | 1.9306 | 0.75 |
|
249 |
+
| 0.0049 | 195.0 | 390 | 1.9328 | 0.75 |
|
250 |
+
| 0.0049 | 196.0 | 392 | 1.9359 | 0.75 |
|
251 |
+
| 0.0049 | 197.0 | 394 | 1.9377 | 0.75 |
|
252 |
+
| 0.0049 | 198.0 | 396 | 1.9403 | 0.75 |
|
253 |
+
| 0.0049 | 199.0 | 398 | 1.9412 | 0.7667 |
|
254 |
+
| 0.0057 | 200.0 | 400 | 1.9415 | 0.7667 |
|
255 |
|
256 |
|
257 |
### Framework versions
|