--- library_name: peft datasets: - Squish42/bluemoon-fandom-1-1-rp-cleaned - OpenLeecher/Teatime - PygmalionAI/PIPPA tags: - not-for-all-audiences - nsfw --- ## What is PetrolLoRA? PetrolLoRA is the LoRA equivalent of [PetrolLM](https://huggingface.co/Norquinal/PetrolLM), without any of the instruction-tuning of the prior. The dataset consists of 2800 samples, with the composition as follows: * AICG Logs (~34%) * PygmalionAI/PIPPA (~33%) * Squish42/bluemoon-fandom-1-1-rp-cleaned (~29%) * OpenLeecher/Teatime (~4%) These samples were then back-filled using gpt-4/gpt-3.5-turbo-16k or otherwise converted to fit the prompt format. ## Prompt Format The LoRA was finetuned with a prompt format similar to the original SuperHOT prototype: ``` --- style: roleplay characters: [char]: [description] summary: [scenario] --- Format: [char]: [message] Human: [message] ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0