Rorschach / .integrity /integrity.json
NoPattern's picture
Upload 17 files
fb692e5 verified
raw
history blame
6.06 kB
{"graph": {"nodes": [{"node": {"id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m", "properties": {"timestamp": "2024-01-18T04:37:28Z", "nodeType": "data", "dataRegistrationJcs": "urn:cid:baga6yaq6eamjazh6k23wyt4c2pz6qr2s54fkadygeszjy4eabtwncaiu5duoy", "registeredBy": "did:key:z6MkutbV1GPZLLquVDwfVrkHcJezwvvCp92RmL1MGdvN4J5P"}}, "enrichments": {"asset_hub": {"asset_id": 151, "asset_name": "AppTek's RLHF Climate Feedback/Training Data", "owning_project": "EQTY ClimateGPT", "asset_description": "AppTek's RLHF (Reinforcement Learning from Human Feedback) Climate Feedback/Training Data is a meticulously curated dataset designed for improving the performance and responsiveness of ClimateGPT-40B. Leveraging a policy optimizer for human feedback, this dataset captures a wide spectrum of human-climate interactions, feedback loops, and decision-making nuances related to climate change. The RLHF approach ensures that the model's responses are aligned with human values and provides better, more relevant, and context-aware outputs.", "asset_format": "Dataset (CSV, JSON, etc.)", "asset_type": "Code", "asset_blob_type": "iroh-collection", "source_location_url": "", "contact_info": "Via AppTek community or associated paper authors", "license": "Custom License - Refer to the official site for terms.", "license_link": "https://apptek.com/rlhf-climate-feedback-license", "registered_date": "2024-01-18T04:49:09.757978Z", "last_modified_date": "2024-01-18T04:49:09.757978Z"}}}, {"node": {"id": "urn:cid:bafkr4iefsxz5zzn2fx2zpklogxgj3hndx2mbmirxcztz5lyg342jtstk2u", "properties": {"dataRegistrationJcs": "urn:cid:baga6yaq6edzlgprocz2yczwr3sjq6bgkhev22u3fegzvzoitzslo3wgbgxxqy", "timestamp": "2024-01-18T04:35:15Z", "registeredBy": "did:key:z6MkutbV1GPZLLquVDwfVrkHcJezwvvCp92RmL1MGdvN4J5P", "nodeType": "data"}}, "enrichments": {"asset_hub": {"asset_id": 150, "asset_name": "AppTek's RLHF Climate Feedback/Training Data", "owning_project": "EQTY ClimateGPT", "asset_description": "AppTek's RLHF (Reinforcement Learning from Human Feedback) Climate Feedback/Training Data is a meticulously curated dataset designed for improving the performance and responsiveness of ClimateGPT-40B. Leveraging a policy optimizer for human feedback, this dataset captures a wide spectrum of human-climate interactions, feedback loops, and decision-making nuances related to climate change. The RLHF approach ensures that the model's responses are aligned with human values and provides better, more relevant, and context-aware outputs.", "asset_format": "Dataset (CSV, JSON, etc.)", "asset_type": "Dataset", "asset_blob_type": "iroh-collection", "source_location_url": "", "contact_info": "Via AppTek community or associated paper authors", "license": "Custom License - Refer to the official site for terms.", "license_link": "https://apptek.com/rlhf-climate-feedback-license", "registered_date": "2024-01-18T04:49:09.686439Z", "last_modified_date": "2024-01-18T04:49:09.686439Z"}}}, {"node": {"id": "urn:cid:bafkr4ieqv4gkv6vvpb3twx2qdrg3p76evukyhgbtc6zyqo4cmktx6fj56q", "properties": {"registeredBy": "did:key:z6MkutbV1GPZLLquVDwfVrkHcJezwvvCp92RmL1MGdvN4J5P", "dataRegistrationJcs": "urn:cid:baga6yaq6ebhgvoqqmvtq635kgbbwoo4r67mnqx62sj6fjugl6tiauijrihzji", "nodeType": "data", "timestamp": "2024-01-18T04:36:05Z"}}, "enrichments": {"asset_hub": {"asset_id": 149, "asset_name": "AppTek's RLHF Climate Feedback/Training Data", "owning_project": "EQTY ClimateGPT", "asset_description": "AppTek's RLHF (Reinforcement Learning from Human Feedback) Climate Feedback/Training Data is a meticulously curated dataset designed for improving the performance and responsiveness of ClimateGPT-40B. Leveraging a policy optimizer for human feedback, this dataset captures a wide spectrum of human-climate interactions, feedback loops, and decision-making nuances related to climate change. The RLHF approach ensures that the model's responses are aligned with human values and provides better, more relevant, and context-aware outputs.", "asset_format": "Dataset (CSV, JSON, etc.)", "asset_type": "Code", "asset_blob_type": "", "source_location_url": "", "contact_info": "Via AppTek community or associated paper authors", "license": "Custom License - Refer to the official site for terms.", "license_link": "https://apptek.com/rlhf-climate-feedback-license", "registered_date": "2024-01-18T04:49:09.582926Z", "last_modified_date": "2024-01-18T04:49:09.582926Z"}}}, {"node": {"id": "urn:cid:bagb6qaq6eamd47ljtsgmt5kcn65twgxmqrr3nkvzpovtwufdr4zczwhuh25jg", "properties": {"timestamp": "2024-01-18T04:39:14Z", "registeredBy": "did:key:z6MkutbV1GPZLLquVDwfVrkHcJezwvvCp92RmL1MGdvN4J5P", "vcRegistrationsJcs": ["urn:cid:baga6yaq6edanpbd6hrneobcgkc63h44ktdbsm5wcuar2oobhxqfzprz7vl7tm"], "operatedBy": "did:key:z6MkutbV1GPZLLquVDwfVrkHcJezwvvCp92RmL1MGdvN4J5P", "nodeType": "computation", "jcsCID": "urn:cid:baga6yaq6eauwybuqjfxbqouyc6usoqrvrkuyghcdaxi6zzk4cib76vbhyzht4"}}, "enrichments": {}}], "edges": [{"edge": {"id": "f34bf435-c727-4e75-a0a4-af209a67036b", "source_id": "urn:cid:bafkr4iefsxz5zzn2fx2zpklogxgj3hndx2mbmirxcztz5lyg342jtstk2u", "target_id": "urn:cid:bagb6qaq6eamd47ljtsgmt5kcn65twgxmqrr3nkvzpovtwufdr4zczwhuh25jg", "statement": "urn:cid:bagb6qaq6eamd47ljtsgmt5kcn65twgxmqrr3nkvzpovtwufdr4zczwhuh25jg", "label": "input"}, "enrichments": {}}, {"edge": {"id": "2bf27149-96f7-4f04-81a0-1722e9682c5a", "source_id": "urn:cid:bafkr4ieqv4gkv6vvpb3twx2qdrg3p76evukyhgbtc6zyqo4cmktx6fj56q", "target_id": "urn:cid:bagb6qaq6eamd47ljtsgmt5kcn65twgxmqrr3nkvzpovtwufdr4zczwhuh25jg", "statement": "urn:cid:bagb6qaq6eamd47ljtsgmt5kcn65twgxmqrr3nkvzpovtwufdr4zczwhuh25jg", "label": "input"}, "enrichments": {}}, {"edge": {"id": "7c777044-bb18-4f96-b265-03225c8f8288", "source_id": "urn:cid:bagb6qaq6eamd47ljtsgmt5kcn65twgxmqrr3nkvzpovtwufdr4zczwhuh25jg", "target_id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m", "statement": "urn:cid:bagb6qaq6eamd47ljtsgmt5kcn65twgxmqrr3nkvzpovtwufdr4zczwhuh25jg", "label": "output"}, "enrichments": {}}]}}