--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-VD results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8349877949552482 --- # distilhubert-finetuned-VD This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4702 - Accuracy: 0.8350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.555 | 1.0 | 167 | 0.4702 | 0.8350 | | 0.3965 | 2.0 | 334 | 0.4398 | 0.7570 | | 0.4106 | 3.0 | 501 | 0.7742 | 0.6713 | | 0.4372 | 4.0 | 668 | 0.9340 | 0.6827 | | 0.2087 | 5.0 | 835 | 1.0133 | 0.7574 | | 0.124 | 6.0 | 1002 | 1.1049 | 0.7437 | | 0.0509 | 7.0 | 1169 | 1.2264 | 0.7590 | | 0.0016 | 8.0 | 1336 | 1.2315 | 0.7845 | | 0.0064 | 9.0 | 1503 | 1.3620 | 0.7762 | | 0.0006 | 10.0 | 1670 | 1.3149 | 0.8039 | | 0.0007 | 11.0 | 1837 | 1.2818 | 0.8116 | | 0.0003 | 12.0 | 2004 | 1.2635 | 0.8298 | | 0.0003 | 13.0 | 2171 | 1.3287 | 0.8225 | | 0.0002 | 14.0 | 2338 | 1.3200 | 0.8295 | | 0.0001 | 15.0 | 2505 | 1.4146 | 0.8226 | | 0.0001 | 16.0 | 2672 | 1.4359 | 0.8221 | | 0.0001 | 17.0 | 2839 | 1.4443 | 0.8233 | | 0.0001 | 18.0 | 3006 | 1.5031 | 0.8184 | | 0.0001 | 19.0 | 3173 | 1.5111 | 0.8182 | | 0.0001 | 20.0 | 3340 | 1.5145 | 0.8182 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2