NiloofarMomeni commited on
Commit
d3d8273
1 Parent(s): eda42c4

End of training

Browse files
Files changed (2) hide show
  1. README.md +96 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-VD
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8349877949552482
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-VD
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4702
36
+ - Accuracy: 0.8350
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 20
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.555 | 1.0 | 167 | 0.4702 | 0.8350 |
70
+ | 0.3965 | 2.0 | 334 | 0.4398 | 0.7570 |
71
+ | 0.4106 | 3.0 | 501 | 0.7742 | 0.6713 |
72
+ | 0.4372 | 4.0 | 668 | 0.9340 | 0.6827 |
73
+ | 0.2087 | 5.0 | 835 | 1.0133 | 0.7574 |
74
+ | 0.124 | 6.0 | 1002 | 1.1049 | 0.7437 |
75
+ | 0.0509 | 7.0 | 1169 | 1.2264 | 0.7590 |
76
+ | 0.0016 | 8.0 | 1336 | 1.2315 | 0.7845 |
77
+ | 0.0064 | 9.0 | 1503 | 1.3620 | 0.7762 |
78
+ | 0.0006 | 10.0 | 1670 | 1.3149 | 0.8039 |
79
+ | 0.0007 | 11.0 | 1837 | 1.2818 | 0.8116 |
80
+ | 0.0003 | 12.0 | 2004 | 1.2635 | 0.8298 |
81
+ | 0.0003 | 13.0 | 2171 | 1.3287 | 0.8225 |
82
+ | 0.0002 | 14.0 | 2338 | 1.3200 | 0.8295 |
83
+ | 0.0001 | 15.0 | 2505 | 1.4146 | 0.8226 |
84
+ | 0.0001 | 16.0 | 2672 | 1.4359 | 0.8221 |
85
+ | 0.0001 | 17.0 | 2839 | 1.4443 | 0.8233 |
86
+ | 0.0001 | 18.0 | 3006 | 1.5031 | 0.8184 |
87
+ | 0.0001 | 19.0 | 3173 | 1.5111 | 0.8182 |
88
+ | 0.0001 | 20.0 | 3340 | 1.5145 | 0.8182 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.39.3
94
+ - Pytorch 2.2.2+cu121
95
+ - Datasets 2.18.0
96
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:493a4630d332b0df966ac8b6aa4602233febf708429029ee8f552a92fbd6cc3e
3
  size 94763496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ef87534f2c337251cb0b8707ffc21d5d270ee1c4af096db3394299b107c4843
3
  size 94763496