--- base_model: Iker/Llama-3-Instruct-Neurona-8b-v2 datasets: - Danielbrdz/Barcenas-Economia - HiTZ/casimedicos-exp - somosnlp/coser_resumenes - csebuetnlp/CrossSum - Iker/Document-Translation-en-es - somosnlp/es-inclusive-language-it - glaiveai/glaive-code-assistant-v3 - glaiveai/glaive-function-calling-v2 - Iker/InstructTranslation-EN-ES - somosnlp/lenguaje-claro-dataset - somosnlp/LingComp_QA - Iker/NoticIA - teknium/OpenHermes-2.5 - Iker/OpenHermes-2.5-Spanish - Helsinki-NLP/opus-100 - projecte-aina/RAG_Multilingual - HiTZ/This-is-not-a-dataset - Iker/Reddit-Post-Translation - wikipedia language: - es - en library_name: transformers license: llama3 pipeline_tag: text-generation tags: - synthetic - llama-cpp - gguf-my-repo --- # NikolayKozloff/Llama-3-Instruct-Neurona-8b-v2-Q4_0-GGUF This model was converted to GGUF format from [`Iker/Llama-3-Instruct-Neurona-8b-v2`](https://huggingface.co/Iker/Llama-3-Instruct-Neurona-8b-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Iker/Llama-3-Instruct-Neurona-8b-v2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Llama-3-Instruct-Neurona-8b-v2-Q4_0-GGUF --hf-file llama-3-instruct-neurona-8b-v2-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Llama-3-Instruct-Neurona-8b-v2-Q4_0-GGUF --hf-file llama-3-instruct-neurona-8b-v2-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Llama-3-Instruct-Neurona-8b-v2-Q4_0-GGUF --hf-file llama-3-instruct-neurona-8b-v2-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Llama-3-Instruct-Neurona-8b-v2-Q4_0-GGUF --hf-file llama-3-instruct-neurona-8b-v2-q4_0.gguf -c 2048 ```