--- base_model: Rostlab/prot_bert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: prot_bert-fine-tuned-toxicity_3.1 results: [] --- # prot_bert-fine-tuned-toxicity_3.1 This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6981 - Accuracy: 0.5484 - Precision: 0.3007 - Recall: 0.5484 - F1: 0.3884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6948 | 1.0 | 16 | 0.6957 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6957 | 2.0 | 32 | 0.6965 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6939 | 3.0 | 48 | 0.6989 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6924 | 4.0 | 64 | 0.6977 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6924 | 5.0 | 80 | 0.6976 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6928 | 6.0 | 96 | 0.6984 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6923 | 7.0 | 112 | 0.6976 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6876 | 8.0 | 128 | 0.6981 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1