File size: 4,753 Bytes
264e91e c103f91 ad56bbf c103f91 ad56bbf c103f91 ad56bbf 264e91e c103f91 ad56bbf c103f91 ad56bbf c103f91 ad56bbf c103f91 ad56bbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- en
license: apache-2.0
model_name: Octopus-V4-GGUF
base_model: NexaAIDev/Octopus-v4
inference: false
model_creator: NexaAIDev
quantized_by: Nexa AI, Inc.
tags:
- function calling
- on-device language model
- gguf
- llama cpp
---
# Octopus V4-GGUF: Graph of language models
<p align="center">
- <a href="https://huggingface.co/NexaAIDev/Octopus-v4" target="_blank">Original Model</a>
- <a href="https://www.nexa4ai.com/" target="_blank">Nexa AI Website</a>
- <a href="https://github.com/NexaAI/octopus-v4" target="_blank">Octopus-v4 Github</a>
- <a href="https://arxiv.org/abs/2404.19296" target="_blank">ArXiv</a>
- <a href="https://huggingface.co/spaces/NexaAIDev/domain_llm_leaderboard" target="_blank">Domain LLM Leaderbaord</a>
</p>
<p align="center" width="100%">
<a><img src="octopus-v4-logo.png" alt="nexa-octopus" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a>
</p>
**Acknowledgement**:
We sincerely thank our community members, [ThunderBeee](https://huggingface.co/ThunderBeee) and [ZY6](https://huggingface.co/ZY6), for their extraordinary contributions to this quantization effort. Please explore [Octopus-v4](https://huggingface.co/NexaAIDev/Octopus-v4) for our original huggingface model.
## Run with [Ollama](https://github.com/ollama/ollama)
```bash
ollama run NexaAIDev/octopus-v4-q4_k_m
```
Input example:
```json
Query: Tell me the result of derivative of x^3 when x is 2?
Response: <nexa_4> ('Determine the derivative of the function f(x) = x^3 at the point where x equals 2, and interpret the result within the context of rate of change and tangent slope.')<nexa_end>
```
Note that `<nexa_4>` represents the math gpt.
### Dataset and Benchmark
* Utilized questions from [MMLU](https://github.com/hendrycks/test) to evaluate the performances.
* Evaluated with the Ollama [llm-benchmark](https://github.com/MinhNgyuen/llm-benchmark) method.
## Quantized GGUF Models
| Name | Quant method | Bits | Size | Respons (token/second) | Use Cases |
| ---------------------- | ------------ | ---- | ------- | ---------------------- | ----------------------------------------- |
| Octopus-v4.gguf | | | 7.20 GB | 27.64 | extremely large |
| Octopus-v4-Q2_K.gguf | Q2_K | 2 | 1.32 GB | 54.20 | extremely not recommended, high loss |
| Octopus-v4-Q3_K.gguf | Q3_K | 3 | 1.82 GB | 51.22 | not recommended |
| Octopus-v4-Q3_K_S.gguf | Q3_K_S | 3 | 1.57 GB | 51.78 | not very recommended |
| Octopus-v4-Q3_K_M.gguf | Q3_K_M | 3 | 1.82 GB | 50.86 | not very recommended |
| Octopus-v4-Q3_K_L.gguf | Q3_K_L | 3 | 1.94 GB | 50.05 | not very recommended |
| Octopus-v4-Q4_0.gguf | Q4_0 | 4 | 2.03 GB | 65.76 | good quality, recommended |
| Octopus-v4-Q4_1.gguf | Q4_1 | 4 | 2.24 GB | 69.01 | slow, good quality, recommended |
| Octopus-v4-Q4_K.gguf | Q4_K | 4 | 2.23 GB | 55.76 | slow, good quality, recommended |
| Octopus-v4-Q4_K_S.gguf | Q4_K_S | 4 | 2.04 GB | 53.98 | high quality, recommended |
| Octopus-v4-Q4_K_M.gguf | Q4_K_M | 4 | 1.51 GB | 58.39 | some functions loss, not very recommended |
| Octopus-v4-Q5_0.gguf | Q5_0 | 5 | 2.45 GB | 61.98 | slow, good quality |
| Octopus-v4-Q5_1.gguf | Q5_1 | 5 | 2.67 GB | 63.44 | slow, good quality |
| Octopus-v4-Q5_K.gguf | Q5_K | 5 | 2.58 GB | 58.28 | moderate speed, recommended |
| Octopus-v4-Q5_K_S.gguf | Q5_K_S | 5 | 2.45 GB | 59.95 | moderate speed, recommended |
| Octopus-v4-Q5_K_M.gguf | Q5_K_M | 5 | 2.62 GB | 53.31 | fast, good quality, recommended |
| Octopus-v4-Q6_K.gguf | Q6_K | 6 | 2.91 GB | 52.15 | large, not very recommended |
| Octopus-v4-Q8_0.gguf | Q8_0 | 8 | 3.78 GB | 50.10 | very large, good quality |
| Octopus-v4-f16.gguf | f16 | 16 | 7.20 GB | 30.61 | extremely large |
_Quantized with llama.cpp_ |