versae's picture
Update eval.py
a60f2ea
raw
history blame
10.8 kB
#!/usr/bin/env python3
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from num2words import num2words as n2w
from slugify import slugify
from transformers import AutoFeatureExtractor, AutoModelForCTC, pipeline, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM, Wav2Vec2FeatureExtractor
# from pyctcdecode import BeamSearchDecoderCTC
from cardinal_numbers import convert_nums
def log_results(result: Dataset, args: Dict[str, str]):
"""DO NOT CHANGE. This function computes and logs the result metrics."""
log_outputs = args.log_outputs
lm = "withLM" if args.use_lm else "noLM"
model_id = args.model_id.replace("/", "_").replace(".", "")
if args.filter:
extra_args = [args.config, slugify(args.filter), args.split, lm]
else:
extra_args = [args.config, args.split, lm]
dataset_id = "_".join([model_id] + args.dataset.split("/") + extra_args)
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
# print & log results
result_str = f"{dataset_id}\nWER: {wer_result}\nCER: {cer_result}"
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
with open(f"{dataset_id}_eval_results.tsv", "w") as f:
f.write("\t".join([args.model_id, args.dataset, args.config, args.filter, args.split, str(lm), str(wer_result), str(cer_result)]))
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["prediction"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["target"] + "\n")
result.map(write_to_file, with_indices=True)
def normalize_text(original_text: str, dataset: str) -> str:
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
text = original_text.lower()
if dataset.lower().endswith("fleurs"):
replacements = (
(r"\be\.kr", "etter kristus fødsel"),
(r"\bf\.kr", "før kristi fødsel"),
(r"\bca[.]?\b", "circa"),
(r"(\d)\s*km/t", r"\1 kilometer i timen"),
(r"(\d)\s*km", r"\1 kilometer"),
(r"(\d)\s*cm", r"\1 centimeter"),
(r"(\d)\s*mm", r"\1 millimeter"),
(r"kl\.", "klokka"),
(r"f\.eks", "for eksempel"),
)
for abrev, expasion in replacements:
text = re.sub(abrev, expasion, text)
text = re.sub(r'(\d+)[-–](\d+)', r'\1 til \2', text) # 1-89, 70-90
text = re.sub(r'(\d{2}):00', r'\1', text) # 21:00
text = re.sub(r"(\d{2}):0(\d{1})", r"\1 null \2", text) # 17:03
text = re.sub(r"(\d{1,2}):(\d{1,2})", r"\1 \2", text) # 17:23 (time), 4:3 (aspect ratios)
text = re.sub(r"(1[1-9])00", r"\1 hundre", text) # 1800, 1900
text = re.sub(r"(1[1-9])0([1-9])", r"\1 null \2 ", text) # 1901, 1909
text = re.sub(r"(1[1-9])([1-9]\d)", r"\1 \2 ", text) # 1911, 1987
text = re.sub(r"(20)0([1-9])", r"\1 null \2 ", text) # 2009
text = re.sub(r"(20)(\d{2})", r"\1 \2 ", text) # 2009
text = re.sub(r"(\d{1,3})[.](\d{1,2})", r"\1 dot \2 ", text) # 802.11n, 2.5ghz (in English)
text = re.sub(r"(\d{1,2})[ .](\d{3})", r"\1\2", text) # 10 000, 32.000
text = re.sub(r'(\w+)-(\w+)', r'\1 \2', text) # n-standard
# text = re.compile(r"-?0?[1-9][\d.]*").sub(lambda x: n2w(x.group(0), lang="no"), text.replace(".", ""))
text = re.compile(r"-?0?[1-9][\d.]*").sub(lambda x: convert_nums(int(x.group(0)), nn=True), text.replace(".", ""))
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
text = re.sub(chars_to_ignore_regex, "", text) + " "
if dataset.lower().endswith("nst"):
text = text.lower()
text = text.replace("(...vær stille under dette opptaket...)", "")
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
# text = re.sub('\\(?=(Punktum|Komma|Utropstegn|Spørsmålstegn))', ' ', text)
text = re.sub('\s+', ' ', text)
elif dataset.lower().endswith("npsc"):
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
text = re.sub('\s+', ' ', text)
elif dataset.lower().endswith("fleurs"):
text = re.sub('[áàâ]', 'a', text)
text = re.sub('[ä]', 'æ', text)
text = re.sub('[éèëê]', 'e', text)
text = re.sub('[íìïî]', 'i', text)
text = re.sub('[óòöô]', 'o', text)
text = re.sub('[ö]', 'ø', text)
text = re.sub('[ç]', 'c', text)
text = re.sub('[úùüû]', 'u', text)
text = re.sub('[«»]', '', text)
text = re.sub('\s+', ' ', text)
text = re.sub('<e+h?>', 'ĥ', text)
text = re.sub('<m+>', 'ĥ', text)
text = re.sub('<q+>', 'ĥ', text)
text = re.sub('<inaudible>', 'ĥ', text)
text = re.sub('[<>]', '', text)
# # In addition, we can normalize the target text, e.g. removing new lines characters etc...
# # note that order is important here!
# token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
# for t in token_sequences_to_ignore:
# text = " ".join(text.split(t))
return text.strip()
def main(args):
# load dataset
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
if args.filter:
attribute, value = list(map(str.strip, args.filter.split(":")))
dataset = dataset.filter(
lambda x: x[attribute] == value,
desc=f"Filtering on {args.filter}",
)
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
sampling_rate = feature_extractor.sampling_rate
# resample audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
# load eval pipeline
if args.device is None:
args.device = 0 if torch.cuda.is_available() else -1
# asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
model_instance = AutoModelForCTC.from_pretrained(args.model_id)
if args.use_lm:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
decoder = processor.decoder
else:
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
decoder = None
asr = pipeline(
"automatic-speech-recognition",
model=model_instance,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
decoder=decoder,
device=args.device
)
# feature_extractor_dict, _ = Wav2Vec2FeatureExtractor.get_feature_extractor_dict(args.model_id)
# feature_extractor_dict["processor_class"] = "Wav2Vec2Processor" if not args.use_lm else "Wav2Vec2ProcessorWithLM"
# feature_extractor = Wav2Vec2FeatureExtractor.from_dict(feature_extractor_dict)
# asr = pipeline("automatic-speech-recognition", model=args.model_id, feature_extractor=feature_extractor, device=args.device, decoder=BeamSearchDecoderCTC.load_from_dir("./"))
# map function to decode audio
def map_to_pred(batch):
prediction = asr(
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
)
batch["prediction"] = prediction["text"]
batch["target"] = normalize_text(batch[args.text_column], args.dataset)
return batch
# run inference on all examples
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
# compute and log_results
# do not change function below
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument(
"--filter", type=str, default="", help="Simple filter on attributes. *E.g.* `region_of_youth:Troms` would pnly keep those samplesfor which the condition is met"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--text_column", type=str, default="text", help="Column name containing the transcription."
)
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
parser.add_argument(
"--use_lm", action="store_true", help="If defined, use included language model as the decoder."
)
args = parser.parse_args()
main(args)