NathanClonts
commited on
Commit
•
030b8f1
1
Parent(s):
2eb14d5
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.19 +/- 17.71
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f2fa694b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f2fa694c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f2fa694ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f2fa694d30>", "_build": "<function ActorCriticPolicy._build at 0x78f2fa694dc0>", "forward": "<function ActorCriticPolicy.forward at 0x78f2fa694e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f2fa694ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f2fa694f70>", "_predict": "<function ActorCriticPolicy._predict at 0x78f2fa695000>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f2fa695090>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f2fa695120>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f2fa6951b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f2fa61fa40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711248297495592015, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFKzq76j+VE/bhIfvhMypb4M1ym+MNPkOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC/mrGR3eN2MAWyUTRIBjAF0lEdAmqz89B8hLXV9lChoBkdAcIzW8yvcJ2gHTZgBaAhHQJqvUTRIBil1fZQoaAZHQG/A8rZrYXhoB00uAWgIR0CasPrBCUosdX2UKGgGR0A7wT7l7tzCaAdL9mgIR0Cas4kmx+rmdX2UKGgGR0BxHMhW5paiaAdNyQFoCEdAmrYVId2gWnV9lChoBkdAby4DbrTpgWgHTVYBaAhHQJq5KvfTCtR1fZQoaAZHQG3Mr5hz/6xoB02pAmgIR0CavRPGACnxdX2UKGgGR0Br31OsT37DaAdNjgFoCEdAmsCJCjUNKHV9lChoBkdAcFHdp7CzkmgHTX4BaAhHQJrCwWTHKfZ1fZQoaAZHQHHpEfHPu5VoB014AWgIR0CaxN/4qPOqdX2UKGgGR0BxygwXZXdTaAdNrQFoCEdAmsh7PIGQjnV9lChoBkdAbaurQPZqVWgHTZ8BaAhHQJrLDc9GI9F1fZQoaAZHQG5s57XxvvVoB016AWgIR0CazcKYAsCldX2UKGgGR0BtK4dQwblzaAdNZQFoCEdAmtIrCSA6MnV9lChoBkdAbQy9mHxjKGgHTf4BaAhHQJrVBL127nR1fZQoaAZHQHElmWhRIjJoB03UAWgIR0Ca2OFQEZBLdX2UKGgGR0Bx0viwSrYHaAdNSQFoCEdAmtq35vcafnV9lChoBkdAcRkc4o7V8WgHTV0BaAhHQJrcr8GcFyJ1fZQoaAZHQFKFRTCLuQZoB0vlaAhHQJrfKGATZg51fZQoaAZHQGLQ+eWfK6poB03oA2gIR0Ca5hJ4jbBXdX2UKGgGR0Bt8bpqynk1aAdNVQFoCEdAmugMdLg4wXV9lChoBkdAbaJmmLtNSWgHTZUBaAhHQJrqYHGCI1t1fZQoaAZHQHFfOWGATZhoB006AWgIR0Ca7Z150KZ2dX2UKGgGR0BwWQ6T4cm0aAdNewFoCEdAmu/IYekpJHV9lChoBkdATatW+49X92gHTTIBaAhHQJrxit6ol2N1fZQoaAZHQG5n8rAgxJxoB013AWgIR0Ca9PzqrzXjdX2UKGgGR0A/vkMkQf6oaAdL9GgIR0Ca9mi1y/9HdX2UKGgGR0BvGqHoHLRsaAdNXAFoCEdAmvhq2nbZe3V9lChoBkdAcKS96kZaV2gHTV8BaAhHQJr8K5vtMPB1fZQoaAZHQGI/kTpPhydoB03oA2gIR0CbBGfVqesgdX2UKGgGR0BwB1EDyOJdaAdNcwFoCEdAmwao42jwhHV9lChoBkdAcZ5mqHXVb2gHTeUCaAhHQJsMH2tdRix1fZQoaAZHQHF7dn003wVoB035AmgIR0CbEHPJJXhgdX2UKGgGR0Bs9svGp++eaAdNZgFoCEdAmxOvAwfyPXV9lChoBkdAUDk84gieNGgHS+RoCEdAmxTsh1Tzd3V9lChoBkdAcIW1SwW30GgHTXgBaAhHQJsW/7/GVA11fZQoaAZHQHCZa9CeEqVoB01DAWgIR0CbGgZ88cMmdX2UKGgGR0BwkBFTefqYaAdNpwFoCEdAmxxgb6xgRnV9lChoBkdAcYmipvP1MGgHTU4BaAhHQJseP/zasZJ1fZQoaAZHQGsjotcv/R5oB015AWgIR0CbIZJcgQpXdX2UKGgGR0Bv2/7SApazaAdNKQFoCEdAmyMzw2ETQHV9lChoBkdAcKfbT+ee4GgHTUsBaAhHQJslCJLuhK11fZQoaAZHQG/2rfcer+5oB03aAWgIR0CbKNpPAO8TdX2UKGgGR0BBDq7qY7aJaAdNHAFoCEdAmyr9rTH80nV9lChoBkdAcBrWp6yB1GgHTU4BaAhHQJstUjD8+A51fZQoaAZHQHBkGxt52QpoB01OAWgIR0CbMTyGBWgfdX2UKGgGR0BwN+wB5ooNaAdNdwFoCEdAmzNQ04zabnV9lChoBkdAbYeRXfZVXGgHTVIBaAhHQJs2baufVZt1fZQoaAZHQG+/JB5X2dxoB01sAWgIR0CbOImUnogWdX2UKGgGR0Bxyu7Wd3B6aAdNNAFoCEdAmzpC5mRNh3V9lChoBkdAQa74Ju2qk2gHS+hoCEdAmzuJyIYWL3V9lChoBkdAcBCcUM5OrWgHTVIBaAhHQJs+nOlfqot1fZQoaAZHQG94elbeMydoB01nAWgIR0CbQIzUI9kjdX2UKGgGR0BwZwrGza9LaAdNfQFoCEdAm0KxuKoAGXV9lChoBkdAa91R1oxpL2gHTToBaAhHQJtFmm51/2F1fZQoaAZHQEpJMC9ytFNoB0vuaAhHQJtG8BT4tYl1fZQoaAZHQHDa27OE/SpoB01kAWgIR0CbSOb3XZoPdX2UKGgGR0BDOyIYWLxaaAdL72gIR0CbS2vzOHFhdX2UKGgGR0BuxP+2mYShaAdNfgFoCEdAm02Gi+L3sXV9lChoBkdAclRokzGgjGgHTUkBaAhHQJtPaSKWLP51fZQoaAZHQHBRq3d9Dx9oB010AWgIR0CbUrOD8LrpdX2UKGgGR0BvsVH4GlhxaAdNZQFoCEdAm1Sk5+6RQ3V9lChoBkdASLLiOvMbFWgHTScBaAhHQJtWSHWSU1R1fZQoaAZHQHBhR9gF5fNoB01FAWgIR0CbWbSyMUAUdX2UKGgGR0Bt7imO2iL3aAdNQgFoCEdAm1vz/ACW/3V9lChoBkdAbtMYLsrupmgHTYsBaAhHQJtfEejmCAd1fZQoaAZHQHHXLk4m1IBoB01MAWgIR0CbYileF+NMdX2UKGgGR0BwD5bTtsvaaAdNgAFoCEdAm2RwDvE0i3V9lChoBkdAb5/jx0+1SmgHTVMBaAhHQJtmXE9+w1R1fZQoaAZHQDLoDgZTAFhoB00EAWgIR0CbaQplSS/1dX2UKGgGR0BsqlU+9rXUaAdNNgFoCEdAm2rO4kNWl3V9lChoBkdAbEH0Rvm5lWgHTXkBaAhHQJts7gpBomJ1fZQoaAZHQG/ULh73PAxoB01cAWgIR0CbcArRjSXudX2UKGgGR0Bv+CgsbvPUaAdNHAFoCEdAm3GtFSbYsnV9lChoBkdAcOLANoakymgHTUYBaAhHQJtzbyauwHJ1fZQoaAZHQG/kmbb1yvNoB00oAWgIR0CbdRIcinpCdX2UKGgGR0BwM8bXHzYmaAdNhwFoCEdAm3h8HjZL7HV9lChoBkdARs31pTMq0GgHS/ZoCEdAm3nYsEq2B3V9lChoBkdAciQhLGrCFmgHTRkBaAhHQJt7XuF6Avt1fZQoaAZHQHDdlQMx46hoB00rAWgIR0CbfkQj2SMcdX2UKGgGR0BxGjt/nW8RaAdNkAFoCEdAm4CJ22XsxHV9lChoBkdALCzVtoBaLWgHTQABaAhHQJuB8URFqi51fZQoaAZHQHBM10Lc9GJoB01HAWgIR0CbhO6SDAaedX2UKGgGR0BwQG6Gxlg/aAdNhAFoCEdAm4cR4D9wWHV9lChoBkdAcXoxLkCFK2gHTVYBaAhHQJuJkgdOqNp1fZQoaAZHQEe3yGzru6VoB0v1aAhHQJuM+RW912d1fZQoaAZHQHLQWCiAUcpoB01ZAWgIR0Cbj1m5DqnndX2UKGgGR0BOEVf/m1YyaAdL+GgIR0CbkLVNYbKidX2UKGgGR0Bx90rwvxpdaAdNXwFoCEdAm5Ka/yoXK3V9lChoBkdAchYk5p8F6mgHTWQBaAhHQJuVykxh2GJ1fZQoaAZHQHDw/YSQHRloB00fAWgIR0Cbl1lJpWWAdX2UKGgGR0BuhibUgB91aAdNQQFoCEdAm5knRgJC0HV9lChoBkdAcK2kT6BRRGgHTU0BaAhHQJucKC2+fyx1fZQoaAZHQDtCJMxoIv9oB0vLaAhHQJudT3ai9Ix1fZQoaAZHQHAx1HjIaLpoB00qAWgIR0CbnvMkQf6odX2UKGgGR0Beu7x3FDOUaAdN6ANoCEdAm6XMf/3nIXV9lChoBkdAcLTrVe8f3mgHTUEBaAhHQJuotwxWT5h1fZQoaAZHQEAPCFbmlqJoB0vdaAhHQJuqD7655JN1fZQoaAZHQG+qZEDyOJdoB01IAWgIR0Cbq9butwJgdX2UKGgGR0BwUohhYvFnaAdNZAFoCEdAm63Vjy4FzXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac8a2c796f5b873fed6f9cbdb350fb51952c874473636b6be5f2e1be6036f3a0
|
3 |
+
size 147414
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78f2fa694b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f2fa694c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f2fa694ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f2fa694d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78f2fa694dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78f2fa694e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78f2fa694ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f2fa694f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78f2fa695000>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f2fa695090>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f2fa695120>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78f2fa6951b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78f2fa61fa40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1711248297495592015,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFKzq76j+VE/bhIfvhMypb4M1ym+MNPkOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC/mrGR3eN2MAWyUTRIBjAF0lEdAmqz89B8hLXV9lChoBkdAcIzW8yvcJ2gHTZgBaAhHQJqvUTRIBil1fZQoaAZHQG/A8rZrYXhoB00uAWgIR0CasPrBCUosdX2UKGgGR0A7wT7l7tzCaAdL9mgIR0Cas4kmx+rmdX2UKGgGR0BxHMhW5paiaAdNyQFoCEdAmrYVId2gWnV9lChoBkdAby4DbrTpgWgHTVYBaAhHQJq5KvfTCtR1fZQoaAZHQG3Mr5hz/6xoB02pAmgIR0CavRPGACnxdX2UKGgGR0Br31OsT37DaAdNjgFoCEdAmsCJCjUNKHV9lChoBkdAcFHdp7CzkmgHTX4BaAhHQJrCwWTHKfZ1fZQoaAZHQHHpEfHPu5VoB014AWgIR0CaxN/4qPOqdX2UKGgGR0BxygwXZXdTaAdNrQFoCEdAmsh7PIGQjnV9lChoBkdAbaurQPZqVWgHTZ8BaAhHQJrLDc9GI9F1fZQoaAZHQG5s57XxvvVoB016AWgIR0CazcKYAsCldX2UKGgGR0BtK4dQwblzaAdNZQFoCEdAmtIrCSA6MnV9lChoBkdAbQy9mHxjKGgHTf4BaAhHQJrVBL127nR1fZQoaAZHQHElmWhRIjJoB03UAWgIR0Ca2OFQEZBLdX2UKGgGR0Bx0viwSrYHaAdNSQFoCEdAmtq35vcafnV9lChoBkdAcRkc4o7V8WgHTV0BaAhHQJrcr8GcFyJ1fZQoaAZHQFKFRTCLuQZoB0vlaAhHQJrfKGATZg51fZQoaAZHQGLQ+eWfK6poB03oA2gIR0Ca5hJ4jbBXdX2UKGgGR0Bt8bpqynk1aAdNVQFoCEdAmugMdLg4wXV9lChoBkdAbaJmmLtNSWgHTZUBaAhHQJrqYHGCI1t1fZQoaAZHQHFfOWGATZhoB006AWgIR0Ca7Z150KZ2dX2UKGgGR0BwWQ6T4cm0aAdNewFoCEdAmu/IYekpJHV9lChoBkdATatW+49X92gHTTIBaAhHQJrxit6ol2N1fZQoaAZHQG5n8rAgxJxoB013AWgIR0Ca9PzqrzXjdX2UKGgGR0A/vkMkQf6oaAdL9GgIR0Ca9mi1y/9HdX2UKGgGR0BvGqHoHLRsaAdNXAFoCEdAmvhq2nbZe3V9lChoBkdAcKS96kZaV2gHTV8BaAhHQJr8K5vtMPB1fZQoaAZHQGI/kTpPhydoB03oA2gIR0CbBGfVqesgdX2UKGgGR0BwB1EDyOJdaAdNcwFoCEdAmwao42jwhHV9lChoBkdAcZ5mqHXVb2gHTeUCaAhHQJsMH2tdRix1fZQoaAZHQHF7dn003wVoB035AmgIR0CbEHPJJXhgdX2UKGgGR0Bs9svGp++eaAdNZgFoCEdAmxOvAwfyPXV9lChoBkdAUDk84gieNGgHS+RoCEdAmxTsh1Tzd3V9lChoBkdAcIW1SwW30GgHTXgBaAhHQJsW/7/GVA11fZQoaAZHQHCZa9CeEqVoB01DAWgIR0CbGgZ88cMmdX2UKGgGR0BwkBFTefqYaAdNpwFoCEdAmxxgb6xgRnV9lChoBkdAcYmipvP1MGgHTU4BaAhHQJseP/zasZJ1fZQoaAZHQGsjotcv/R5oB015AWgIR0CbIZJcgQpXdX2UKGgGR0Bv2/7SApazaAdNKQFoCEdAmyMzw2ETQHV9lChoBkdAcKfbT+ee4GgHTUsBaAhHQJslCJLuhK11fZQoaAZHQG/2rfcer+5oB03aAWgIR0CbKNpPAO8TdX2UKGgGR0BBDq7qY7aJaAdNHAFoCEdAmyr9rTH80nV9lChoBkdAcBrWp6yB1GgHTU4BaAhHQJstUjD8+A51fZQoaAZHQHBkGxt52QpoB01OAWgIR0CbMTyGBWgfdX2UKGgGR0BwN+wB5ooNaAdNdwFoCEdAmzNQ04zabnV9lChoBkdAbYeRXfZVXGgHTVIBaAhHQJs2baufVZt1fZQoaAZHQG+/JB5X2dxoB01sAWgIR0CbOImUnogWdX2UKGgGR0Bxyu7Wd3B6aAdNNAFoCEdAmzpC5mRNh3V9lChoBkdAQa74Ju2qk2gHS+hoCEdAmzuJyIYWL3V9lChoBkdAcBCcUM5OrWgHTVIBaAhHQJs+nOlfqot1fZQoaAZHQG94elbeMydoB01nAWgIR0CbQIzUI9kjdX2UKGgGR0BwZwrGza9LaAdNfQFoCEdAm0KxuKoAGXV9lChoBkdAa91R1oxpL2gHTToBaAhHQJtFmm51/2F1fZQoaAZHQEpJMC9ytFNoB0vuaAhHQJtG8BT4tYl1fZQoaAZHQHDa27OE/SpoB01kAWgIR0CbSOb3XZoPdX2UKGgGR0BDOyIYWLxaaAdL72gIR0CbS2vzOHFhdX2UKGgGR0BuxP+2mYShaAdNfgFoCEdAm02Gi+L3sXV9lChoBkdAclRokzGgjGgHTUkBaAhHQJtPaSKWLP51fZQoaAZHQHBRq3d9Dx9oB010AWgIR0CbUrOD8LrpdX2UKGgGR0BvsVH4GlhxaAdNZQFoCEdAm1Sk5+6RQ3V9lChoBkdASLLiOvMbFWgHTScBaAhHQJtWSHWSU1R1fZQoaAZHQHBhR9gF5fNoB01FAWgIR0CbWbSyMUAUdX2UKGgGR0Bt7imO2iL3aAdNQgFoCEdAm1vz/ACW/3V9lChoBkdAbtMYLsrupmgHTYsBaAhHQJtfEejmCAd1fZQoaAZHQHHXLk4m1IBoB01MAWgIR0CbYileF+NMdX2UKGgGR0BwD5bTtsvaaAdNgAFoCEdAm2RwDvE0i3V9lChoBkdAb5/jx0+1SmgHTVMBaAhHQJtmXE9+w1R1fZQoaAZHQDLoDgZTAFhoB00EAWgIR0CbaQplSS/1dX2UKGgGR0BsqlU+9rXUaAdNNgFoCEdAm2rO4kNWl3V9lChoBkdAbEH0Rvm5lWgHTXkBaAhHQJts7gpBomJ1fZQoaAZHQG/ULh73PAxoB01cAWgIR0CbcArRjSXudX2UKGgGR0Bv+CgsbvPUaAdNHAFoCEdAm3GtFSbYsnV9lChoBkdAcOLANoakymgHTUYBaAhHQJtzbyauwHJ1fZQoaAZHQG/kmbb1yvNoB00oAWgIR0CbdRIcinpCdX2UKGgGR0BwM8bXHzYmaAdNhwFoCEdAm3h8HjZL7HV9lChoBkdARs31pTMq0GgHS/ZoCEdAm3nYsEq2B3V9lChoBkdAciQhLGrCFmgHTRkBaAhHQJt7XuF6Avt1fZQoaAZHQHDdlQMx46hoB00rAWgIR0CbfkQj2SMcdX2UKGgGR0BxGjt/nW8RaAdNkAFoCEdAm4CJ22XsxHV9lChoBkdALCzVtoBaLWgHTQABaAhHQJuB8URFqi51fZQoaAZHQHBM10Lc9GJoB01HAWgIR0CbhO6SDAaedX2UKGgGR0BwQG6Gxlg/aAdNhAFoCEdAm4cR4D9wWHV9lChoBkdAcXoxLkCFK2gHTVYBaAhHQJuJkgdOqNp1fZQoaAZHQEe3yGzru6VoB0v1aAhHQJuM+RW912d1fZQoaAZHQHLQWCiAUcpoB01ZAWgIR0Cbj1m5DqnndX2UKGgGR0BOEVf/m1YyaAdL+GgIR0CbkLVNYbKidX2UKGgGR0Bx90rwvxpdaAdNXwFoCEdAm5Ka/yoXK3V9lChoBkdAchYk5p8F6mgHTWQBaAhHQJuVykxh2GJ1fZQoaAZHQHDw/YSQHRloB00fAWgIR0Cbl1lJpWWAdX2UKGgGR0BuhibUgB91aAdNQQFoCEdAm5knRgJC0HV9lChoBkdAcK2kT6BRRGgHTU0BaAhHQJucKC2+fyx1fZQoaAZHQDtCJMxoIv9oB0vLaAhHQJudT3ai9Ix1fZQoaAZHQHAx1HjIaLpoB00qAWgIR0CbnvMkQf6odX2UKGgGR0Beu7x3FDOUaAdN6ANoCEdAm6XMf/3nIXV9lChoBkdAcLTrVe8f3mgHTUEBaAhHQJuotwxWT5h1fZQoaAZHQEAPCFbmlqJoB0vdaAhHQJuqD7655JN1fZQoaAZHQG+qZEDyOJdoB01IAWgIR0Cbq9butwJgdX2UKGgGR0BwUohhYvFnaAdNZAFoCEdAm63Vjy4FzXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0add8a153b0de5c9319a0a9d49ee6d27baeb0ea0e044e15b6df3656cb8bb8d59
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfdfbdfb25fbcc62c5b875c1273084b6c716e78eea4f63675556b587bd7d859e
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (195 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.19253869634264, "std_reward": 17.706312572883856, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-24T03:15:23.797990"}
|