NanQiangHF commited on
Commit
18a60c1
1 Parent(s): 9dbd96f

NanQiangHF/llama3_8b_instruct_BWRM

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +36 -53
  3. adapter_model.safetensors +2 -2
  4. tokenizer.json +0 -0
  5. training_args.bin +2 -2
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,74 +1,57 @@
1
  ---
2
- license: llama3
3
- library_name: peft
4
  tags:
 
5
  - trl
6
  - reward-trainer
7
- - generated_from_trainer
8
  base_model: meta-llama/Meta-Llama-3-8B-Instruct
9
- metrics:
10
- - accuracy
11
- model-index:
12
- - name: llama3_8b_instruct_BWRM
13
- results: []
14
  ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
- # llama3_8b_instruct_BWRM
20
-
21
- This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.0578
24
- - Accuracy: 0.9945
25
 
26
- ## Model description
 
27
 
28
- More information needed
29
 
30
- ## Intended uses & limitations
 
31
 
32
- More information needed
 
 
 
 
33
 
34
- ## Training and evaluation data
35
 
36
- More information needed
37
 
38
- ## Training procedure
39
 
40
- ### Training hyperparameters
41
 
42
- The following hyperparameters were used during training:
43
- - learning_rate: 0.0005
44
- - train_batch_size: 16
45
- - eval_batch_size: 16
46
- - seed: 42
47
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
- - lr_scheduler_type: linear
49
- - num_epochs: 1
50
 
51
- ### Training results
 
 
 
 
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
- |:-------------:|:------:|:----:|:---------------:|:--------:|
55
- | 0.1912 | 0.0863 | 300 | 0.1233 | 0.9877 |
56
- | 0.1126 | 0.1725 | 600 | 0.0812 | 0.9896 |
57
- | 0.0884 | 0.2588 | 900 | 0.0742 | 0.9896 |
58
- | 0.0886 | 0.3450 | 1200 | 0.0834 | 0.9887 |
59
- | 0.0779 | 0.4313 | 1500 | 0.0732 | 0.9945 |
60
- | 0.0788 | 0.5175 | 1800 | 0.0941 | 0.9922 |
61
- | 0.0716 | 0.6038 | 2100 | 0.0657 | 0.9935 |
62
- | 0.0693 | 0.6901 | 2400 | 0.0656 | 0.9961 |
63
- | 0.0656 | 0.7763 | 2700 | 0.0635 | 0.9938 |
64
- | 0.0664 | 0.8626 | 3000 | 0.0587 | 0.9958 |
65
- | 0.0594 | 0.9488 | 3300 | 0.0578 | 0.9945 |
66
 
67
 
68
- ### Framework versions
69
 
70
- - PEFT 0.13.1
71
- - Transformers 4.44.0
72
- - Pytorch 2.3.0+cu121
73
- - Datasets 3.0.0
74
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
 
3
  tags:
4
+ - generated_from_trainer
5
  - trl
6
  - reward-trainer
 
7
  base_model: meta-llama/Meta-Llama-3-8B-Instruct
8
+ model_name: llama3_8b_instruct_BWRM
9
+ licence: license
 
 
 
10
  ---
11
 
12
+ # Model Card for llama3_8b_instruct_BWRM
 
 
 
 
 
 
 
 
13
 
14
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
+ ## Quick start
18
 
19
+ ```python
20
+ from transformers import pipeline
21
 
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="NanQiangHF/llama3_8b_instruct_BWRM", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
 
28
+ ## Training procedure
29
 
 
30
 
 
31
 
32
+ This model was trained with Reward.
33
 
34
+ ### Framework versions
 
 
 
 
 
 
 
35
 
36
+ - TRL: 0.12.0.dev0
37
+ - Transformers: 4.46.0.dev0
38
+ - Pytorch: 2.3.0
39
+ - Datasets: 3.0.0
40
+ - Tokenizers: 0.20.1
41
 
42
+ ## Citations
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
 
 
45
 
46
+ Cite TRL as:
47
+
48
+ ```bibtex
49
+ @misc{vonwerra2022trl,
50
+ title = {{TRL: Transformer Reinforcement Learning}},
51
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
+ year = 2020,
53
+ journal = {GitHub repository},
54
+ publisher = {GitHub},
55
+ howpublished = {\url{https://github.com/huggingface/trl}}
56
+ }
57
+ ```
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0604ffcef2943a79b80b8b68b3d089459c129261e61c10a12b0d8926a040db14
3
- size 13656728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60747d7c9b087a5d0241c60bba9002e0c6c11bcb2df2dcef082b43db6422655e
3
+ size 13664920
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ebe1e49d5fe1b09d2f498020e77772149df32d9f1b69d5b97281373e7a7a735a
3
- size 5368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b2964536ae0ad56a6912de4f73cb1cf904210236738ee76641e78da53abc2c
3
+ size 5432