# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import importlib.util import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py TRANSFORMERS_PATH = "src/diffusers" PATH_TO_DOCS = "docs/source/en" REPO_PATH = "." def _find_text_in_file(filename, start_prompt, end_prompt): """ Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty lines. """ with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start prompt. start_index = 0 while not lines[start_index].startswith(start_prompt): start_index += 1 start_index += 1 end_index = start_index while not lines[end_index].startswith(end_prompt): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | ALLOWED_MODEL_SUFFIXES = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the diffusers module imported is the one in the repo. spec = importlib.util.spec_from_file_location( "diffusers", os.path.join(TRANSFORMERS_PATH, "__init__.py"), submodule_search_locations=[TRANSFORMERS_PATH], ) diffusers_module = spec.loader.load_module() # Thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python def camel_case_split(identifier): """Split a camelcased `identifier` into words.""" matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier) return [m.group(0) for m in matches] def _center_text(text, width): text_length = 2 if text == "✅" or text == "❌" else len(text) left_indent = (width - text_length) // 2 right_indent = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def get_model_table_from_auto_modules(): """Generates an up-to-date model table from the content of the auto modules.""" # Dictionary model names to config. config_mapping_names = diffusers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES model_name_to_config = { name: config_mapping_names[code] for code, name in diffusers_module.MODEL_NAMES_MAPPING.items() if code in config_mapping_names } model_name_to_prefix = {name: config.replace("ConfigMixin", "") for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. slow_tokenizers = collections.defaultdict(bool) fast_tokenizers = collections.defaultdict(bool) pt_models = collections.defaultdict(bool) tf_models = collections.defaultdict(bool) flax_models = collections.defaultdict(bool) # Let's lookup through all diffusers object (once). for attr_name in dir(diffusers_module): lookup_dict = None if attr_name.endswith("Tokenizer"): lookup_dict = slow_tokenizers attr_name = attr_name[:-9] elif attr_name.endswith("TokenizerFast"): lookup_dict = fast_tokenizers attr_name = attr_name[:-13] elif _re_tf_models.match(attr_name) is not None: lookup_dict = tf_models attr_name = _re_tf_models.match(attr_name).groups()[0] elif _re_flax_models.match(attr_name) is not None: lookup_dict = flax_models attr_name = _re_flax_models.match(attr_name).groups()[0] elif _re_pt_models.match(attr_name) is not None: lookup_dict = pt_models attr_name = _re_pt_models.match(attr_name).groups()[0] if lookup_dict is not None: while len(attr_name) > 0: if attr_name in model_name_to_prefix.values(): lookup_dict[attr_name] = True break # Try again after removing the last word in the name attr_name = "".join(camel_case_split(attr_name)[:-1]) # Let's build that table! model_names = list(model_name_to_config.keys()) model_names.sort(key=str.lower) columns = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). widths = [len(c) + 2 for c in columns] widths[0] = max([len(name) for name in model_names]) + 2 # Build the table per se table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n" check = {True: "✅", False: "❌"} for name in model_names: prefix = model_name_to_prefix[name] line = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n" return table def check_model_table(overwrite=False): """Check the model table in the index.rst is consistent with the state of the lib and maybe `overwrite`.""" current_table, start_index, end_index, lines = _find_text_in_file( filename=os.path.join(PATH_TO_DOCS, "index.md"), start_prompt="", ) new_table = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:]) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() check_model_table(args.fix_and_overwrite)