# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved. # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # More information and citation instructions are available on the # Marigold project website: https://marigoldmonodepth.github.io # -------------------------------------------------------------------------- import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, AutoencoderTiny, LCMScheduler, MarigoldDepthPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, is_flaky, load_image, require_torch_gpu, slow, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class MarigoldDepthPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = MarigoldDepthPipeline params = frozenset(["image"]) batch_params = frozenset(["image"]) image_params = frozenset(["image"]) image_latents_params = frozenset(["latents"]) callback_cfg_params = frozenset([]) test_xformers_attention = False required_optional_params = frozenset( [ "num_inference_steps", "generator", "output_type", ] ) def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, time_cond_proj_dim=time_cond_proj_dim, sample_size=32, in_channels=8, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = LCMScheduler( beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=False, steps_offset=1, beta_schedule="scaled_linear", clip_sample=False, thresholding=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "prediction_type": "depth", "scale_invariant": True, "shift_invariant": True, } return components def get_dummy_tiny_autoencoder(self): return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "num_inference_steps": 1, "processing_resolution": 0, "generator": generator, "output_type": "np", } return inputs def _test_marigold_depth( self, generator_seed: int = 0, expected_slice: np.ndarray = None, atol: float = 1e-4, **pipe_kwargs, ): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed) pipe_inputs.update(**pipe_kwargs) prediction = pipe(**pipe_inputs).prediction prediction_slice = prediction[0, -3:, -3:, -1].flatten() if pipe_inputs.get("match_input_resolution", True): self.assertEqual(prediction.shape, (1, 32, 32, 1), "Unexpected output resolution") else: self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 1, "Unexpected output dimensions") self.assertEqual( max(prediction.shape[1:3]), pipe_inputs.get("processing_resolution", 768), "Unexpected output resolution", ) self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) def test_marigold_depth_dummy_defaults(self): self._test_marigold_depth( expected_slice=np.array([0.4529, 0.5184, 0.4985, 0.4355, 0.4273, 0.4153, 0.5229, 0.4818, 0.4627]), ) def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self): self._test_marigold_depth( generator_seed=0, expected_slice=np.array([0.4529, 0.5184, 0.4985, 0.4355, 0.4273, 0.4153, 0.5229, 0.4818, 0.4627]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self): self._test_marigold_depth( generator_seed=0, expected_slice=np.array([0.4511, 0.4531, 0.4542, 0.5024, 0.4987, 0.4969, 0.5281, 0.5215, 0.5182]), num_inference_steps=1, processing_resolution=16, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self): self._test_marigold_depth( generator_seed=2024, expected_slice=np.array([0.4671, 0.4739, 0.5130, 0.4308, 0.4411, 0.4720, 0.5064, 0.4796, 0.4795]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self): self._test_marigold_depth( generator_seed=0, expected_slice=np.array([0.4165, 0.4485, 0.4647, 0.4003, 0.4577, 0.5074, 0.5106, 0.5077, 0.5042]), num_inference_steps=2, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self): self._test_marigold_depth( generator_seed=0, expected_slice=np.array([0.4817, 0.5425, 0.5146, 0.5367, 0.5034, 0.4743, 0.4395, 0.4734, 0.4399]), num_inference_steps=1, processing_resolution=64, ensemble_size=1, batch_size=1, match_input_resolution=True, ) @is_flaky def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self): self._test_marigold_depth( generator_seed=0, expected_slice=np.array([0.3260, 0.3591, 0.2837, 0.2971, 0.2750, 0.2426, 0.4200, 0.3588, 0.3254]), num_inference_steps=1, processing_resolution=32, ensemble_size=3, ensembling_kwargs={"reduction": "mean"}, batch_size=1, match_input_resolution=True, ) @is_flaky def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self): self._test_marigold_depth( generator_seed=0, expected_slice=np.array([0.3180, 0.4194, 0.3013, 0.2902, 0.3245, 0.2897, 0.4718, 0.4174, 0.3705]), num_inference_steps=1, processing_resolution=32, ensemble_size=4, ensembling_kwargs={"reduction": "mean"}, batch_size=2, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self): self._test_marigold_depth( generator_seed=0, expected_slice=np.array([0.5515, 0.4588, 0.4197, 0.4741, 0.4229, 0.4328, 0.5333, 0.5314, 0.5182]), num_inference_steps=1, processing_resolution=16, ensemble_size=1, batch_size=1, match_input_resolution=False, ) def test_marigold_depth_dummy_no_num_inference_steps(self): with self.assertRaises(ValueError) as e: self._test_marigold_depth( num_inference_steps=None, expected_slice=np.array([0.0]), ) self.assertIn("num_inference_steps", str(e)) def test_marigold_depth_dummy_no_processing_resolution(self): with self.assertRaises(ValueError) as e: self._test_marigold_depth( processing_resolution=None, expected_slice=np.array([0.0]), ) self.assertIn("processing_resolution", str(e)) @slow @require_torch_gpu class MarigoldDepthPipelineIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def _test_marigold_depth( self, is_fp16: bool = True, device: str = "cuda", generator_seed: int = 0, expected_slice: np.ndarray = None, model_id: str = "prs-eth/marigold-lcm-v1-0", image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg", atol: float = 1e-4, **pipe_kwargs, ): from_pretrained_kwargs = {} if is_fp16: from_pretrained_kwargs["variant"] = "fp16" from_pretrained_kwargs["torch_dtype"] = torch.float16 pipe = MarigoldDepthPipeline.from_pretrained(model_id, **from_pretrained_kwargs) if device == "cuda": pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(generator_seed) image = load_image(image_url) width, height = image.size prediction = pipe(image, generator=generator, **pipe_kwargs).prediction prediction_slice = prediction[0, -3:, -3:, -1].flatten() if pipe_kwargs.get("match_input_resolution", True): self.assertEqual(prediction.shape, (1, height, width, 1), "Unexpected output resolution") else: self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 1, "Unexpected output dimensions") self.assertEqual( max(prediction.shape[1:3]), pipe_kwargs.get("processing_resolution", 768), "Unexpected output resolution", ) self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) def test_marigold_depth_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self): self._test_marigold_depth( is_fp16=False, device="cpu", generator_seed=0, expected_slice=np.array([0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_einstein_f32_cuda_G0_S1_P768_E1_B1_M1(self): self._test_marigold_depth( is_fp16=False, device="cuda", generator_seed=0, expected_slice=np.array([0.1244, 0.1265, 0.1292, 0.1240, 0.1252, 0.1266, 0.1246, 0.1226, 0.1180]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_einstein_f16_cuda_G0_S1_P768_E1_B1_M1(self): self._test_marigold_depth( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.1241, 0.1262, 0.1290, 0.1238, 0.1250, 0.1265, 0.1244, 0.1225, 0.1179]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_einstein_f16_cuda_G2024_S1_P768_E1_B1_M1(self): self._test_marigold_depth( is_fp16=True, device="cuda", generator_seed=2024, expected_slice=np.array([0.1710, 0.1725, 0.1738, 0.1700, 0.1700, 0.1696, 0.1698, 0.1663, 0.1592]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_einstein_f16_cuda_G0_S2_P768_E1_B1_M1(self): self._test_marigold_depth( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.1085, 0.1098, 0.1110, 0.1081, 0.1085, 0.1082, 0.1085, 0.1057, 0.0996]), num_inference_steps=2, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_einstein_f16_cuda_G0_S1_P512_E1_B1_M1(self): self._test_marigold_depth( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.2683, 0.2693, 0.2698, 0.2666, 0.2632, 0.2615, 0.2656, 0.2603, 0.2573]), num_inference_steps=1, processing_resolution=512, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_einstein_f16_cuda_G0_S1_P768_E3_B1_M1(self): self._test_marigold_depth( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.1200, 0.1215, 0.1237, 0.1193, 0.1197, 0.1202, 0.1196, 0.1166, 0.1109]), num_inference_steps=1, processing_resolution=768, ensemble_size=3, ensembling_kwargs={"reduction": "mean"}, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_einstein_f16_cuda_G0_S1_P768_E4_B2_M1(self): self._test_marigold_depth( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.1121, 0.1135, 0.1155, 0.1111, 0.1115, 0.1118, 0.1111, 0.1079, 0.1019]), num_inference_steps=1, processing_resolution=768, ensemble_size=4, ensembling_kwargs={"reduction": "mean"}, batch_size=2, match_input_resolution=True, ) def test_marigold_depth_einstein_f16_cuda_G0_S1_P512_E1_B1_M0(self): self._test_marigold_depth( is_fp16=True, device="cuda", generator_seed=0, expected_slice=np.array([0.2671, 0.2690, 0.2720, 0.2659, 0.2676, 0.2739, 0.2664, 0.2686, 0.2573]), num_inference_steps=1, processing_resolution=512, ensemble_size=1, batch_size=1, match_input_resolution=False, )